LSTM在Transformer中应用输入输出维度设置

LSTM输入参数有input_size, hidden_size, num_layers, bidrectional

input_size为输入序列维度的最后一维([8,56,768]),输入的input_size填写768

hidden_size可以理解为输出的序列的最后一维

num_layers表示LSTM堆叠的层数

bidrectional为布尔类型,True时表示使用双向的LSTM,False表示为单向的LSTM

例如:我想 [8,56,768] 经过LSTM后维度不变,则需要设置:

a=torch.randn(8,56,768)
lstm=torch.nn.LSTM(768,384,10,bidirectional=True, batch_first=True)
out,(h,c)=lstm(a)
print("out:",out.size())

此处为什么设置hidden_size等于384,因为使用的是双向的LSTM,hidden_size输出时会翻倍

如果是单向的LSTM则设置hidden_size为768(谨记录个人使用过程)

LSTM(长短期记忆网络)和Transformer是深度学习常用的序列模型,它们可以用于自然语言处理任务。在这,我们将简要展示如何结合LSTMTransformer的示例Python代码,这通常用于构建编码-解码模型,如机器翻译。首先安装必要的库(如TensorFlow或PyTorch)。 ```python # 使用PyTorch示例 import torch import torch.nn as nn class LSTM_Transformer(nn.Module): def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout, pad_idx, device): super().__init__() self.device = device # LSTM层 self.lstm = nn.LSTM(input_dim, hid_dim, n_layers, bidirectional=True, dropout=dropout) # Transformer部分 self.transformer = nn.Transformer(hid_dim*2, emb_dim, n_heads=8, dropout=dropout) self.linear = nn.Linear(emb_dim, output_dim) # 输出维度取决于具体任务 # 初始化权重矩阵 self.embedding = nn.Embedding(input_dim, emb_dim, padding_idx=pad_idx) def forward(self, src): embedded = self.embedding(src) # 输入序列嵌入 packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, src.eq(self.pad_idx).sum(dim=0), enforce_sorted=False) packed_output, (hidden, cell) = self.lstm(packed_embedded) # LSTM编码 hidden = torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1) # 双向LSTM取最后两层的隐藏状态 hidden = hidden.permute(1, 0, 2) # 为了适应Transformer输入格式 output = self.transformer(hidden) # Transformer解码 output = self.linear(output) # 应用线性变换得到最终预测 return output # 假设你已经有了输入和输出维度(input_dim, output_dim),以及其他超参数设置 model = LSTM_Transformer(input_dim, emb_dim, hid_dim, n_layers, dropout, pad_idx, device='cuda' if torch.cuda.is_available() else 'cpu') ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值