赛程安排
- 公平定义:各队在其相邻比赛里的最小间隔场次达到最大的可能
- 数学问题:在赛程的最小间隔场次中求最大
- n支球队单循环,记最小间隔场次r。r场前后2场,3支球队不参与这r场比赛。有2个不同的球队参加这r场比赛 所以2r<n-3
贷款问题1
- 这个月(第n个),欠银行钱记为An,上个月为An-1,加上利息为An-1(1+r),减去这个月还款X,还欠的 A n A_n An= A n − 1 A_{n-1} An−1(1+r)-x
- 数学归纳法可得
A
n
A_n
An=
A
0
A_0
A0(1+r)
n
^n
n-x[1+1+r+
(
1
+
r
)
2
(1+r)^2
(1+r)2+…+
(
1
+
r
)
n
−
1
(1+r)^{n-1}
(1+r)n−1]
- 容易得出结论:等额还款x必然大于利息Ao r,多借多还,利息高还的多。
贷款问题2-非线性方程数值解法
- A N A_N AN= A 0 A_0 A0 ( 1 + r ) N (1+r)^N (1+r)N-x[ ( 1 + r ) N (1+r)^N (1+r)N-1]/r=0
- f ( r ) f(r) f(r)= A 0 r A_0r A0r ( 1 + r ) N (1+r)^N (1+r)N-x[ ( 1 + r ) N (1+r)^N (1+r)N-1]=0求解
- 两种情形
- 可求精确根(有时计算繁杂)
- 无法求精确根-> 求近似根
非线性方程数值解法
根的隔离与逐步搜索法、二分法
- f(x)=0在[a,b]中只有一个根, [a,b]为隔根区间
- 条件f(x)∈C,f(a)f(b)<0
- f(x)在[a,b]内严格单调
- 求隔根区间的一般方法
- 作图法
- 直接作图
- 转化为等价方程,求图交点
- 逐步搜索法:从区间左/右端出发,定长h一步步向右搜索 f(a+jh)f(a+(j+1)h)<0
- 步长可缩短提升精度
- 二分法 取区间中点,不断缩小区间
牛顿法及割线法
- 牛顿切线法的基本思想:非线性方程线性化,以线性方程的解逼近原方程的解
- 用切线近似代替曲线弧求方程的近似根
- 曲线上一点做切线,与x轴相交的x1对应曲线上的点再做切线
- 不断重复迭代过程。可得牛顿迭代公式 X n X_n Xn= X n − 1 X_{n-1} Xn−1-f( x n − 1 x_{n-1} xn−1)/f’( x n − 1 x_{n-1} xn−1)
- 割线法:用差商f(
x
n
−
1
x_{n-1}
xn−1)-f(
x
n
−
2
x_{n-2}
xn−2)/
x
n
−
1
x_{n-1}
xn−1-
x
n
−
2
x_{n-2}
xn−2代替导数f’(
x
n
−
1
x_{n-1}
xn−1),避免求导运算
- 迭代公式:(双点割线法)
- 特点:逼近根的速度快于简化牛顿法,但慢于牛顿法
- 若将 x n − 2 x_{n-2} xn−2固定为 x 0 x_0 x0,则为单点割线法
贷款问题3-不同的贷款模型
- 省建行:等额本息:按月结息,每月还本还息不等。模型如上
- 市建行:等本、等息、等额还款:取利息平均值
- 利息:将总贷款分N份(期数),每个月减一份再乘利率算利息
- 月还款=总利息/N,+总贷款/N
- 等额本金:利随本清等本不等息
- x k x_k xk=(N-k+1)/N* A 0 A_0 A0r+ A 0 A_0 A0/N
- 现在常见的贷款模型各自优缺点:方便还款
- 等额本息 用的最多
- 等额本金
无条件极值问题
一元函数取得极值的条件
- 必要条件:f(x)在
x
0
x_0
x0处具有导数,且在
x
0
x_0
x0取得极值,则必有f(
x
0
x_0
x0)=0
- 注意:可导函数极值点必然是驻点,反之不一定
- 充分条件:f(x)在
x
0
x_0
x0处具有二阶导数,且f’(
x
0
x_0
x0)=0,f’’(
x
0
x_0
x0)≠0,那么
- f’’( x 0 x_0 x0)<0,函数取极大值
- f’’( x 0 x_0 x0)>0,函数取极小值
- 注意:不可导点也可能是函数极值点
多元函数取得极值的条件
- 必要条件:函数z=f(x,y)在 ( x 0 x_0 x0, y 0 y_0 y0) 具有偏导数,且在( x 0 x_0 x0, y 0 y_0 y0) 处有极值,,则它在该点的偏导数必然为0, f x ′ f_x' fx′( x 0 x_0 x0, y 0 y_0 y0)=0 f y ′ f_y' fy′( x 0 x_0 x0, y 0 y_0 y0)=0
- 仿照一元函数:驻点:凡能使一阶偏导数同时为0的点
- 极值点一定是驻点,反之不一定
- 多元函数f(x)关于x的一阶导数即梯度 ∇ \nabla ∇f(x),f(x)关于x的二阶导数 ∇ 2 \nabla^2 ∇2f(x),称为f(x)的Hesse矩阵
- 充分条件:设函数f(x)在点
x
0
x_0
x0的某邻域内连续,有一阶及二阶连续偏导数,则f(x) 在点
x
0
x_0
x0处是否取得极值点的条件如下
- 一阶偏导数为0
- ∇ 2 \nabla^2 ∇2f(x)正定有极小值,负定有极大值,不定没有极值
条件极值问题-lagrange乘子法
- 对自变量由附加条件的极值
- 函数u=f(x,y,z,t) 在条件 φ \varphi φ(x,y,z,t)=0 , ω \omega ω(x,y,z,t)=0 下的极值,先构造函数 F(x,y,z,t)=f(x,y,z,t)+ λ 1 λ_1 λ1 φ \varphi φ(x,y,z,t)+ λ 2 λ_2 λ2 ω \omega ω(x,y,z,t)=0 其中λ均为常数。可由偏导数为0,及条件解出x,y,z,t,得极值点坐标
货物包装成本问题
模型假设
- 商品生产效率固定不变
- 包装成本只与装包,封包的劳力投入,包装材料多少有关
- 商品包装材料一致,形状、大小相似
- 生产数量w的产品成本为a
- 包装数量为w的产品成本为b。b=
b
1
b_1
b1+
b
2
b_2
b2
-
b
1
b_1
b1:装包劳力成本
- 装料 与w有关
- 封装 与w无关
- b 2 b_2 b2:包装材料成本 只与w大小有关
-
b
1
b_1
b1:装包劳力成本
模型分析
- 模型中有三个参数,至少需要三组数据来估算。如果要求精确,则需要更多的数据