数学建模-第二章:初等数学与与微分建模

这篇内容探讨了公平赛程安排的数学问题,以及两种贷款模型的数学解析。贷款问题涉及等额本息和等额本金的还款计算,通过数学归纳法和非线性方程的数值解法求解。此外,还介绍了寻找函数极值的条件和拉格朗日乘子法解决条件极值问题。最后,讨论了商品包装成本的模型分析。
摘要由CSDN通过智能技术生成

赛程安排

  • 公平定义:各队在其相邻比赛里的最小间隔场次达到最大的可能
  • 数学问题:在赛程的最小间隔场次中求最大
  • n支球队单循环,记最小间隔场次r。r场前后2场,3支球队不参与这r场比赛。有2个不同的球队参加这r场比赛 所以2r<n-3

贷款问题1

  • 这个月(第n个),欠银行钱记为An,上个月为An-1,加上利息为An-1(1+r),减去这个月还款X,还欠的 A n A_n An= A n − 1 A_{n-1} An1(1+r)-x
  • 数学归纳法可得 A n A_n An= A 0 A_0 A0(1+r) n ^n n-x[1+1+r+ ( 1 + r ) 2 (1+r)^2 (1+r)2+…+ ( 1 + r ) n − 1 (1+r)^{n-1} (1+r)n1]
  • 容易得出结论:等额还款x必然大于利息Ao r,多借多还,利息高还的多。

贷款问题2-非线性方程数值解法

  • A N A_N AN= A 0 A_0 A0 ( 1 + r ) N (1+r)^N (1+r)N-x[ ( 1 + r ) N (1+r)^N (1+r)N-1]/r=0
  • f ( r ) f(r) f(r)= A 0 r A_0r A0r ( 1 + r ) N (1+r)^N (1+r)N-x[ ( 1 + r ) N (1+r)^N (1+r)N-1]=0求解
  • 两种情形
    • 可求精确根(有时计算繁杂)
    • 无法求精确根-> 求近似根

非线性方程数值解法

根的隔离与逐步搜索法、二分法

  • f(x)=0在[a,b]中只有一个根, [a,b]为隔根区间
    • 条件f(x)∈C,f(a)f(b)<0
    • f(x)在[a,b]内严格单调
  • 求隔根区间的一般方法
  1. 作图法
    • 直接作图
    • 转化为等价方程,求图交点
  2. 逐步搜索法:从区间左/右端出发,定长h一步步向右搜索 f(a+jh)f(a+(j+1)h)<0
    • 步长可缩短提升精度
  3. 二分法 取区间中点,不断缩小区间

牛顿法及割线法

  • 牛顿切线法的基本思想:非线性方程线性化,以线性方程的解逼近原方程的解
  • 用切线近似代替曲线弧求方程的近似根
    • 曲线上一点做切线,与x轴相交的x1对应曲线上的点再做切线
    • 不断重复迭代过程。可得牛顿迭代公式 X n X_n Xn= X n − 1 X_{n-1} Xn1-f( x n − 1 x_{n-1} xn1)/f’( x n − 1 x_{n-1} xn1)
  • 割线法:用差商f( x n − 1 x_{n-1} xn1)-f( x n − 2 x_{n-2} xn2)/ x n − 1 x_{n-1} xn1- x n − 2 x_{n-2} xn2代替导数f’( x n − 1 x_{n-1} xn1),避免求导运算
    • 迭代公式:(双点割线法)在这里插入图片描述
    • 特点:逼近根的速度快于简化牛顿法,但慢于牛顿法
    • 若将 x n − 2 x_{n-2} xn2固定为 x 0 x_0 x0,则为单点割线法

贷款问题3-不同的贷款模型

  • 省建行:等额本息:按月结息,每月还本还息不等。模型如上
  • 市建行:等本、等息、等额还款:取利息平均值
    • 利息:将总贷款分N份(期数),每个月减一份再乘利率算利息
    • 月还款=总利息/N,+总贷款/N
  • 等额本金:利随本清等本不等息
    • x k x_k xk=(N-k+1)/N* A 0 A_0 A0r+ A 0 A_0 A0/N
  • 现在常见的贷款模型各自优缺点:方便还款
    • 等额本息 用的最多
    • 等额本金

无条件极值问题

一元函数取得极值的条件

  • 必要条件:f(x)在 x 0 x_0 x0处具有导数,且在 x 0 x_0 x0取得极值,则必有f( x 0 x_0 x0)=0
    • 注意:可导函数极值点必然是驻点,反之不一定
  • 充分条件:f(x)在 x 0 x_0 x0处具有二阶导数,且f’( x 0 x_0 x0)=0,f’’( x 0 x_0 x0)≠0,那么
    1. f’’( x 0 x_0 x0)<0,函数取极大值
    2. f’’( x 0 x_0 x0)>0,函数取极小值
  • 注意:不可导点也可能是函数极值点

多元函数取得极值的条件

  • 必要条件:函数z=f(x,y)在 ( x 0 x_0 x0, y 0 y_0 y0) 具有偏导数,且在( x 0 x_0 x0, y 0 y_0 y0) 处有极值,,则它在该点的偏导数必然为0, f x ′ f_x' fx( x 0 x_0 x0, y 0 y_0 y0)=0 f y ′ f_y' fy( x 0 x_0 x0, y 0 y_0 y0)=0
  • 仿照一元函数:驻点:凡能使一阶偏导数同时为0的点
    • 极值点一定是驻点,反之不一定
  • 多元函数f(x)关于x的一阶导数即梯度 ∇ \nabla f(x),f(x)关于x的二阶导数 ∇ 2 \nabla^2 2f(x),称为f(x)的Hesse矩阵 在这里插入图片描述
  • 充分条件:设函数f(x)在点 x 0 x_0 x0的某邻域内连续,有一阶及二阶连续偏导数,则f(x) 在点 x 0 x_0 x0处是否取得极值点的条件如下
    • 一阶偏导数为0
    • ∇ 2 \nabla^2 2f(x)正定有极小值,负定有极大值,不定没有极值

条件极值问题-lagrange乘子法

  • 对自变量由附加条件的极值
  • 函数u=f(x,y,z,t) 在条件 φ \varphi φ(x,y,z,t)=0 , ω \omega ω(x,y,z,t)=0 下的极值,先构造函数 F(x,y,z,t)=f(x,y,z,t)+ λ 1 λ_1 λ1 φ \varphi φ(x,y,z,t)+ λ 2 λ_2 λ2 ω \omega ω(x,y,z,t)=0 其中λ均为常数。可由偏导数为0,及条件解出x,y,z,t,得极值点坐标

货物包装成本问题

模型假设

  • 商品生产效率固定不变
  • 包装成本只与装包,封包的劳力投入,包装材料多少有关
  • 商品包装材料一致,形状、大小相似
  • 生产数量w的产品成本为a
  • 包装数量为w的产品成本为b。b= b 1 b_1 b1+ b 2 b_2 b2
    • b 1 b_1 b1:装包劳力成本
      • 装料 与w有关
      • 封装 与w无关
    • b 2 b_2 b2:包装材料成本 只与w大小有关

模型分析

  • 模型中有三个参数,至少需要三组数据来估算。如果要求精确,则需要更多的数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值