因子建模:
因子是量化交易的基础,其基本的思想是通过研究变量之间的依赖关系。量化交易以数据作为支撑,因子反映原始数据的部分信息,是理解、分析和应用这些数据的手段和桥梁。
量化的最终目的是找到影响股票未来收益和风险的关键因素,通过建立关键因素与股票收益与风险构建量化交易策略。量化交易策略中的因子就是关键因素的特征,通过因子和股票价格之间的量化关系来获取收益。
思维导图:
思维导图可以更好的理解策略、理清脉络。策略基本包含策略的筛选条件、买入条件、仓位和价格、卖出条件四个部分。
策略构建,以最简单的单因子策略(市值因子)为例,其思维导图如下。
单因子——小市值因子策略一直以来有些争议,但不能否认该策略在某些年份的有效性。量化交易策略不是一成不变的,资本市场上没有永恒的策略,量化策略也要随时间和市场不断改进,小市值策略也是如此。小市值策略的基本逻辑其一是小市值公司的溢价;其二是高风险股票的流动性补偿。
止盈止损
止盈:一达到价格全部卖出止盈;二分批止盈,如10%卖出止盈,20%卖出止盈;三收益达到一定幅度后,回落离场止盈,如上涨10%后,下跌5%止盈;四盈利做一个移动均线,当低于均线止盈,如收益每天涨1%,第一天1%、第二天2%、第三天3%、当第四天3.5%,低于4%卖出止盈。还有择时出场,或者与龙头股比较出场。止损:跌到一定价格卖出,如果你的股票下跌50%,下次你要获利100%才能回本,所以止损的设计在交易中非常重要。8%、10%、20%根据个人风险偏好来就行。
复权价:
复权分为前复权、后复权和不复权,股票在分红、送转过程中价格会发生变化,但实际价值没变,因此需要进行复权操作。前复权是指以除权后第一天的价格点为基础;向前复权,股价按照除权后第一天价格同比例缩小,最新价就是除权后的交易价格,预测后续价格方便。后复权以除权前最后一天价格为基础,后面价格同比例放大。复权因子=(1+涨跌幅) × 上一个交易日的复权因子,初始为1前后复权都是同比例放大缩小,量化选股时前后复权是一样的,因为用的是的复权因子和涨跌幅。
tushare的数据可以直接提供前复权数据,因此不用计算。如果在网站上爬的数据需要进行复权处理。
# 计算复权因子
df['复权因子'] = (df['收盘价'] / df['前收盘价']).cumprod()
# 计算前复权
df['收盘价_复权'] = df['复权因子'] * (df.iloc[0]['收盘价'] / df.iloc[0]['复权因子'])
# 计算后复权
df['收盘价_复权'] = df['复权因子'] * (df.iloc[-1]['收盘价'] / df.iloc[-1]['复权因子'])
参数设定:
选股数量5个;券商佣金万三;新规印花税万五
#交易参数设定
select_stock_num = 5 #选股数量设定
cost_rate = 3/10000 #券商佣金 万三
trade_rate = 5/10000 #印花税 万五