小红书最新开源语音识别模型FireRedASR,中文效果新SOTA

小红书开源语音识别模型FireRedASR成新SOTA

近日,小红书 FireRed 团队正式发布并开源了基于大模型的语音识别模型 ——FireRedASR,在语音识别领域带来新突破。

来源丨机器之心

在业界广泛采用的中文普通话公开测试集上,FireRedASR 凭借卓越的性能取得了新 SOTA!FireRedASR 在字错误率(CER)这一核心技术指标上,对比此前的 SOTA Seed-ASR,错误率相对降低 8.4%,充分体现了团队在语音识别技术领域的创新能力与技术突破。

图片

 论文标题:FireRedASR: Open-Source Industrial-Grade Mandarin Speech Recognition Models from Encoder-Decoder to LLM Integration

论文地址:http://arxiv.org/abs/2501.14350

项目地址:https://github.com/FireRedTeam/FireRedASR

FireRedASR 介绍

FireRedASR 系列模型包含两种核心结构:FireRedASR-LLM 和 FireRedASR-AED,分别针对语音识别的极致精度和高效推理需求量身打造。团队开源了不同规模的模型和推理代码,旨在满足全面覆盖多样化的应用场景。

FireRedASR-LLM 和 FireRedASR-AED 的结构如下图所示: 

  • FireRedASR-LLM(左):结合了文本预训练 LLM 的能力,为极致的 ASR 准确率而生,适用于对准确率要求极高的应用场景。

  • FireRedASR-AED(右下):基于经典的 Attention-based Encoder-Decoder 架构,FireRedASR-AED 通过扩展参数至 1.1B,成功平衡了 ASR 语音识别的高准确率与推理效率。

图片

实验及结果

下图是 FireRedASR 和其他 ASR 大模型的对比,在业界常用的中文普通话公开测试集上,FireRedASR-LLM(8.3B 参数量)取得了最优 CER 3.05%、成为新 SOTA!FireRedASR-AED (1.1B 参数量)紧随其后取得 3.18%,两者均比 Seed-ASR(12+B 参数量)的 3.33% 低、并且参数量更小。FireRedASR 也比 Qwen-Audio、SenseVoice、Whisper、Paraformer 取得了更优的 CER。

图片

(aishell1 表示 AISHELL-1 测试集,aishell2 表示 AISHELL-2 iOS 测试集,ws_net 和 ws_meeting 分别表示 WenetSpeech 的 Internet 和 Meeting 测试集)

FireRedASR 不仅在公开测试集上表现优异,在多种日常场景下,也展现了卓越的语音识别效果。

如下图所示,在由短视频、直播、语音输入和智能助手等多种来源组成的 Speech 测试集上,与业内领先的 ASR 服务提供商(ProviderA)和 Paraformer-Large 相比, FireRedASR-LLM 的 CER 相对降低 23.7%~40.0%,优势十分明显。

值得一提的是,在需要歌词识别能力的场景中,FireRedASR-LLM 也表现出极强的适配能力,CER 实现了 50.2%~66.7% 的相对降低,这一成果进一步拓宽了 FireRedASR 的应用范围,使其不仅能胜任传统语音识别需求,还能在创新性的多媒体场景中大放异彩。

图片

值得一提的是,FireRedASR 在中文方言和英语场景中同样表现不俗。在 KeSpeech(中文方言)和 LibriSpeech(英语)测试集上,FireRedASR 的 CER 显著优于此前的开源 SOTA 模型,使其在支持好普通话 ASR 的前提下,在中文方言和英语上也足够通用,进一步凸显了其鲁棒的语言适配能力。

图片

好奇为什么 FireRedASR 能取得如此好的效果吗?可以参考 FireRed 团队公开的技术报告一探究竟,并且模型和代码已经全部开源(链接见上文)。

FireRed 团队希望通过开源能为语音社区做出贡献,促进 ASR 的应用和端到端语音交互的发展。

<think>好的,我现在需要帮助用户寻找开源语音识别模型的下载方法。首先,用户的需求很明确,他们需要开源语音识别模型,并且想知道如何下载。根据用户提供的引用内容,有四个相关的资源:Vosk、FireRedASR、WeNet和Kaldi的CVTE v2模型。我需要逐一分析这些引用,整理出每个模型的下载步骤和特点,确保信息准确。 首先看引用[1]提到的Vosk模型。用户需要去官网下载对应的模型,根据语言需求选择。安装Python库的部分可能需要注意版本兼容性,但用户的问题主要是下载模型,所以重点放在官网步骤上。Vosk支持多语言,适合离线部署,这点需要强调。 接下来是引用[2]的小红书FireRedASR,这是中文SOTA模型,应该去他们的GitHub仓库下载。用户可能需要知道如何访问开源项目,比如通过GitHub链接,可能需要克隆仓库或者下载预训练模型。同时,该模型基于大模型,适合高准确率需求,但可能需要较高的计算资源,不过用户提到优先考虑准确率,所以这点很重要。 然后是引用[3]的WeNet,支持实时流式识别,适合CPU环境。用户的需求里有提到需要实时识别和CPU部署,所以WeNet非常符合。下载方式可能包括从GitHub获取代码和模型,或者使用预训练模型。需要指出其适合中文场景,并且部署步骤可能涉及Python或C++的实现。 引用[4]中的Kaldi CVTE v2模型,用户可能需要访问特定的Kaldi项目页面或作者的专栏来获取。Kaldi本身是一个成熟的语音识别工具包,但部署可能相对复杂,适合有经验的用户。需要说明该模型中文支持情况以及是否需要额外的训练步骤。 现在需要将这些信息整理成清晰的步骤,每个模型分点说明,包括下载方法、特点和适用场景。同时要注意用户提到的需求,如实时识别、CPU部署、中文支持等,确保每个模型的优缺点对应这些需求。此外,用户可能需要安装指南和注意事项,比如Python库的安装或环境配置,但用户的问题主要是下载模型,所以可能需要简要提及相关依赖。 最后,生成相关问题时要围绕用户可能进一步的问题,比如如何部署、性能优化、与其他模型对比等。确保问题覆盖用户可能的后续需求,帮助他们深入理解各个模型的选择和使用。 需要检查每个步骤是否准确,特别是引用来源是否正确,避免错误的信息。例如,确认Vosk的官网地址,FireRedASR开源仓库是否存在,WeNet的文档链接是否有效等。如果有不确定的地方,可能需要提示用户参考官方文档或社区支持。 总结来说,回答的结构应该是先列出各个模型,每个模型包括下载步骤、特点和适用场景,然后给出相关问题。确保使用正确的中文表达,避免术语错误,并且按照用户的要求使用合适的LaTeX格式,但在这个问题中可能数学公式较少,主要注意代码块和引用标识的正确使用。</think>### 开源语音识别模型下载指南 以下是主流开源语音识别模型的下载方法和特点,根据需求选择适合的模型: --- #### 1. **Vosk 模型** - **下载步骤**: 1. 访问 [VOSK Models 官网](https://alphacephei.com/vosk/models) 2. 根据语言需求选择模型(例如中文模型 `vosk-model-cn-0.22`)[^1] 3. 下载并解压到本地目录 - **特点**: - 支持多语言(包括中文) - 提供 Python、Java 等接口,易于集成 - 支持离线部署和实时识别 - **适用场景**: 轻量级本地部署,对计算资源要求低 --- #### 2. **FireRedASR 模型** - **下载步骤**: 1. 访问 [FireRedASR GitHub 仓库](https://github.com/FireRed-team/FireRedASR)(需关注官方开源动态) 2. 根据文档下载预训练模型或通过命令行克隆仓库 ```bash git clone https://github.com/FireRed-team/FireRedASR.git ``` - **特点**: - 中文识别效果达到 SOTA(当前最优)[^2] - 基于大模型训练,适合高精度场景 - **适用场景**: 需要高准确率的中文语音识别 --- #### 3. **WeNet 模型** - **下载步骤**: 1. 访问 [WeNet GitHub 仓库](https://github.com/wenet-e2e/wenet) 2. 下载预训练的中文模型(如 `chinese_aishell2`)[^3] 3. 按照文档配置环境(需安装 PyTorch 和 ONNX) - **特点**: - 支持流式语音识别(实时处理) - 优化 CPU 推理性能,适合内网服务器部署 - **适用场景**: 实时语音转写(如客服对话、会议记录) --- #### 4. **Kaldi CVTE v2 模型** - **下载步骤**: 1. 参考 [Kaldi 中文语音识别专栏](https://example.com/kaldi-cvte)(具体链接需根据实际项目文档调整)[^4] 2. 下载 CVTE v2 预训练模型及声学/语言模型 - **特点**: - 基于传统 GMM-HMM 框架,成熟稳定 - 需搭配 Kaldi 工具链使用 - **适用场景**: 学术研究或已有 Kaldi 技术栈的项目 --- ### 部署注意事项 - **环境依赖**: 多数模型需 Python 3.7+ 和 PyTorch 库,部分需 C++ 编译(如 Kaldi) - **硬件要求**: - CPU 模型(Vosk、WeNet)适合资源受限场景 - GPU 加速可提升 FireRedASR 等大模型的推理速度 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值