强化学习实践(一)Gym介绍

      学了一段时间强化学习的理论,近期准备进行一些算法实践。应用算法的前提是要创建一个合适的仿真环境,目前Openai的Gym(https://gym.openai.com) 是主流的强化学习实验环境库。

      Gym已经集成许多开发好的环境,让RL的研究者们可以直接上手使用,而不需要按照论文中的描述重建环境,当然也可以在Gym中构建自己需要的环境。

总的来说,Gym可提供的环境可以归为以下几类:

1. 经典控制

​ 主要是经典强化学习文献中的控制理论问题,像平衡车的控制。

2. Atari游戏

注意,游戏环境需要单独安装下。

3.Robotics机器人模拟

基于Gym开发的机器人3D模拟环境,通过控制机器臂完成一些特定任务。地址

4..开放的Gym

Gym除了提供如此多的环境外,还提供二次开发的接口,让你可以基于Gym搭建自己想要的环境。例子

注意:Github上也有许多基于Gym开发的强化学习环境

参考文献

1.Openai Gym与强化学习_基于gym的强化学习_李子树_的博客-CSDN博客

2.强化学习Openai Gym基础环境搭建_强化学习环境-CSDN博客 

3. Gym安装Atari环境(Windows,Linux适用)_gym atari-CSDN博客

### 使用OpenAI Gym实现机械强化学习 #### 安装必要的库 为了使用 OpenAI Gym 进行开发,首先需要安装 `gym` 库。可以通过 pip 工具轻松完成这操作[^5]。 ```bash pip install gym ``` 对于更复杂的机器人仿真需求,推荐考虑 NVIDIA 开发的 Isaac Gym,该工具允许开发者仅利用 Python 代码就能高效地构建并运行基于物理引擎的实验环境,特别适合于涉及多个代理(如多台机械)的同时训练场景[^3]。 #### 创建自定义环境 在开始编写具体的强化学习算法前,需先设计个合适的模拟环境来代表实际的任务条件。此环境中应包含: - 物理属性描述:例如质量、摩擦系数等参数; - 动作空间设定:即机械可执行的操作集合; - 奖励机制制定:用于评估每次动作的好坏程度; 下面是个简单的例子,展示了如何创建个基本的机械抓取任务环境[^2]: ```python import gym from gym import spaces import numpy as np class ArmEnv(gym.Env): metadata = {'render.modes': ['human']} def __init__(self, num_objects=5): super(ArmEnv, self).__init__() # 初始化状态和其他设置... self.action_space = spaces.Box(low=-1.0, high=+1.0, shape=(num_joints,), dtype=np.float32) self.observation_space = spaces.Dict({ 'observation': spaces.Box(-np.inf, np.inf, shape=(state_dim,), dtype='float32'), 'achieved_goal': spaces.Box(-np.inf, np.inf, shape=(goal_dim,), dtype='float32'), 'desired_goal': spaces.Box(-np.inf, np.inf, shape=(goal_dim,), dtype='float32') }) def step(self, action): ... return obs, reward, done, info def reset(self): ... return observation def render(self, mode="human"): pass ``` 这段代码片段提供了个框架性的指导,具体细节还需要根据实际情况调整和完善。比如关节数量(`num_joints`)、观测维度(`state_dim`)以及目标维度(`goal_dim`)都需要依据特定的应用背景而定。 #### 实施强化学习策略 旦拥有了定制化的环境之后,就可以着手挑选适用的学习方法了。考虑到机械控制问题通常具有连续的动作域特性,采用诸如 DDPG (Deep Deterministic Policy Gradient) 或者 SAC (Soft Actor-Critic) 等适用于此类情形下的先进算法可能是明智的选择[^1]。 以下是DDPG的个简化版伪代码表示方式: ```python for episode in range(max_episodes): state = env.reset() total_reward = 0 while True: action = policy_net(state).detach().numpy() # 获取行动 next_state, reward, done, _ = env.step(action) buffer.add((state, action, reward, next_state)) # 存储经验元组至回放缓冲区 if len(buffer)>batch_size: batch = random.sample(buffer,batch_size) update_policy(batch,policy_net,value_net,critic_optim,actor_optim,gamma) state = next_state total_reward += reward if done: break print('Episode:',episode,'Reward:',total_reward) ``` 上述循环结构体现了典型的在线学习流程,其中包含了与环境交互获取反馈的过程,并据此不断优化智能体的行为模式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值