最近在学习郑大钟老师的线性系统理论的教材,在学习过程中发现能控性格拉姆矩阵定理的证明有一些简略,下面给出一种详细的证明思路和方法,供一同学习线性系统理论的大家参考,如证明过程存在不严谨的地方,欢迎大家一同交流,共同进步。
对于线性时不变系统,状态方程为:
其中,为n维状态,为p维输入,和分别为和常值矩阵。
【格拉姆矩阵能控性判据】上述系统能控性的充分必要条件为:存在时刻,使得如下格拉姆矩阵(Gram)
为非奇异。
证 充分性:已知Gram矩阵非奇异,证系统完全能控。
欲证系统为完全能控的,根据能控性的定义:在时间中,存在一个无约束容许控制,使系统状态由转移到。由此,可以构建运动状态表达式
证明充分性的主要思想是构造一个,使得状态在控制器的作用下到达零状态。
此处,构造的,上式可以表示成
这表明,状态空间中的所有非零状态均为能控的,即充分性得证。
再证必要性:即已知系统完全能控,证明格拉姆矩阵非奇异。
采用反证法:假设为奇异矩阵(即矩阵的行列式为零),则系统中至少存在一个非零状态使得成立。
由于为非零状态,故为非奇异矩阵,与假设条件相矛盾,假设不成立。
必要性得证,至此证毕。