力扣——835. 图像重叠

题目描述
在这里插入图片描述

思路:
1.图像填充 填充后的图像,即为img1可以平移的所有情况
2.卷积

在这里插入图片描述
在这里插入图片描述

class Solution(object):
    def largestOverlap(self, img1, img2):
        """
        :type img1: List[List[int]]
        :type img2: List[List[int]]
        :rtype: int
        """
        n=len(img1)
        #填充图像,使得图像各种平移变换都涵盖到新的大图像中
        def filling(img):
            m=2*(n-1)+n
            image=[[0]*m for _ in range(m)]
            for i in range(n):
                for j in range(n):
                    if img[i][j]==1:
                        new_i,new_j=i+n-1,j+n-1
                        image[new_i][new_j]=1
            return image
        image=filling(img1)
        m=len(image)
        #把img2作为卷积核,image作为待卷积图像,计算过程中出现的最大重合数

        #卷积核中为1 得位置记录下来
        one_position = []
        for dx in range(n):
            for dy in range(n):
                if img2[dx][dy] == 1:
                    one_position.append([dx, dy])
        res = 0
        for start_i in range(m- n + 1):
            for start_j in range(m- n + 1):
                tmp = 0
                for dx, dy in one_position:
                    tmp += image[start_i + dx][start_j + dy]
                res = max(res, tmp)
                if res==len(one_position):return res
        return res

调包

from scipy.signal import correlate2d

class Solution:
    def largestOverlap(self, A, B):
        return correlate2d(A, B).max()

官网方法:link

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小屋*

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值