因果推断领域-因果效应评估(Estimate Causal Effects )、反事实公平( Counterfactual Fairness)、公平图表示(Fair Graph Learning)

本文讨论了RuochengGuo在公开出版物中的贡献,聚焦于FairGraphLearning项目,以及因果推理中的backdoor、frontdoor和do-calculus方法。作者介绍了这些概念在处理公平性问题时的应用和理论探讨。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因果推断是指通过观察数据中的相关性来研究变量间的因果关系。在Python中,有几个库可以用于因果推断,其中最常用的是DoWhy和CausalImpact。 DoWhy是一个用于因果推断的Python库,它基于因果图(causal graph)的概念来推断因果关系。它提供了一个简单而灵活的框架,可用于估计因果效应、进行因果推断和处理反事实问题。DoWhy支持多种因果推断方法,包括倾向得分匹配、倾向得分加权、双重差分等。 另一个常用的因果推断工具是CausalImpact。CausalImpact是一个用于因果效应估计的Python库,专门用于分析时间序列数据。它基于贝叶斯方法来估计因果效应,并提供了一个易于使用的界面来评估一个事件对时间序列数据的影响。 以下是使用DoWhy进行因果推断的示例代码: ```python import dowhy from dowhy import CausalModel # 创建一个因果模型 model = CausalModel( data=df, # 数据集 treatment='treatment_variable', # 治疗变量 outcome='outcome_variable', # 结果变量 common_causes=['common_cause_1', 'common_cause_2'] # 其他共同原因 ) # 估计因果效应 identified_estimand = model.identify_effect(proceed_when_unidentifiable=True) causal_estimate = model.estimate_effect(identified_estimand, method_name="backdoor.propensity_score_matching") # 因果效应的可视化 model.visualize_effect(identified_estimand, causal_estimate) # 进行因果推断 estimate = model.refute_estimate(identified_estimand, causal_estimate, method_name="random_common_cause") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值