一. 相关概念
1. Variables:unit自带的属性,比如患者的年龄、性别、病史、血压等。在treatment过程中不受到影响的variable叫做pre-treatment variables,有时候也叫context,比如患者的性别;受到影响的variable叫做post-treatment variables。
2. Confounders:干扰因子,会影响treatment选择和结果的一些变量,一些文献中也叫做协变量(covariate)。比如年龄对同一种病人药剂的选择和结果会不同。
3. 通俗地说,探索T对Y因果效应的过程,就是把这两者之间的其他干扰变量(confounder)的作用都剔除的过程。
二. 国内外研究学者
Judea Pearl bayes.cs.ucla.edu/jp_home.html
况琨 况琨-Zhejiang University Personal homepage (zju.edu.cn)
智源社区:
智源社区_没有围墙的人工智能实验室 (baai.ac.cn)
三.SCM
当多个方程组合在一起,可以完整代表一个因果图的信息时,我们便获得了结构因果模型(SCMs, Structural causal model)。如下图,结构因果模型M中有三个结构方程,分别代表了变量B、C、D的因。简言之,结构因果模型可以说是因果图的一种数学表达。
图模型的一个巨大优势在于直观地表示变量的因果关系,有向图中的路径,有且仅有三种基础结构:即链接合、叉接合、对撞接合,处于结点的变量分别称为中介变量、混杂因子、对撞因子。
然而,后门法则的一个局限性在于,可能造成后门的变量必须能够被观测到。如果有遗漏的变量(omitted variable),也将会对因果效应估计造成偏差。
四.前门准则(Front-door criterion)
中文解释:
集合M满足:1. M block掉所有X→Y的路径; 2. 从X→M,所有的后门路径被block掉; 3. 从M→Y,X block掉所有后门路径。
五.工具变量(Instrumental variables)
例子:第二种方法,巧妙的利用第三个变量,创造一个链结合。即找到一个变量Z,使其只影响X,并且不直接影响Y,这样就形成了Z->X->Y的链结合。社会科学文献中,抽签是一个非常好的工具变量,如著名的Angrist (1990) 一文中研究参加越战对战后收入的影响,就是用了征兵时的抽签作为工具变量,抽签(Z)只是为了选出参战的士兵,与参战(X)有关,但与其他的事情(战后收入,Y)无关。也就是说,抽签有且只有通过参加越战这一条路径影响战后收入。
对撞路径U1→ U3← U2(collier)天然阻断T→y,因此可以直接不用把u3加入调整集。
do- calculus已经被证明是完整覆盖了所有可识别因果关系的方法(Shpister and Pearl 2006; Huang and Valtorta 2006),即任何可识别的因果关系都可以通过do- calculus的三种规则来识别。
六.Peal提出的3层梯子
在这三个层级上,能够提出和解决的问题是不同的:
在第一个层级上,问题都是基于相关性的,比如:“我的肺部有很多焦油沉积,我未来患肺癌的概率是多少?”
而在第二个层级上,就涉及到了对现实世界的干预,并预测干预结果,比如:“我现在已经吸烟三年了,如果我现在戒烟,我还会患肺癌吗?”
第三个层级上,就是要构建一个虚拟世界,并将虚拟世界与现在进行对比,问题的答案就是对比的结果,比如“如果过去的三年我都没有吸烟,现在我还会患肺癌吗?” Pearl在数学上证明了,这三个层级之间是有着根本的区别的。
七.研究分支
机器学习+因果推理综述
-
Schölkopf, Bernhard. "Causality for machine learning." arXiv preprint arXiv:1911.10500 (2019).
简介:这是一篇刚刚挂在arxiv 就被 Pearl 亲自 twitter 点赞的论文,是马普智能所所长 Bernhard Schölkopf 最引以为傲的论文之一,他把被 Pearl 点赞这事情第一时间写在个人主页自我介绍的第一段中。Schölkopf 及其团队在因果结合机器学习方面做了最多的工作,此文总结并升华了信息革命时代下因果结合机器学习的一般理论和深刻思考
机器学习方法+因果推理
清华崔鹏团队 Stable learning/prediction 系列论文
机器学习结合因果推理的一个非常好的落脚点。通过stable learning系列技术找到了如何学习稳健的预测模型,提出了一个清晰的预测框架
-
Kuang, Kun, et al. "Stable prediction across unknown environments." Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018.
-
Shen, Zheyan, et al. "Stable Learning via Sample Reweighting." national conference on artificial intelligence (2020).
-
Kuang, Kun, et al. "Stable Prediction with Model Misspecification and Agnostic Distribution Shift." national conference on artificial intelligence (2020).
-
Sgouritsa, Eleni, et al. "Inference of Cause and Effect with Unsupervised Inverse Regression." international conference on artificial intelligence and statistics (2015): 847-855.
简介:半监督学习理论上只对反因果问题有效
-
Wager, Stefan, and Susan Athey. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests." Journal of the American Statistical Association 113.523 (2018): 1228-1242.
简介:用因果随机森林的办法来学习异质因果效
因果推理+医疗大数据
-
Prosperi, Mattia, et al. "Causal inference and counterfactual prediction in machine learning for actionable healthcare." Nature Machine Intelligence 2.7 (2020): 369-375.
简介:通过反事实推断,制定健康干预方案,相比基于相关性的方案,提升对用户的准确性
-
Richens, Jonathan G., Ciarán M. Lee, and Saurabh Johri. "Improving the accuracy of medical diagnosis with causal machine learning." Nature Communications 11.1 (2020): 1-9.
简介:用包含因果推理的机器学习模型,提升医疗诊断的准确性
-
Castro, Daniel C., Ian Walker, and Ben Glocker. "Causality matters in medical imaging." Nature Communications 11.1 (2020): 1-10.
简介:医学影像中,通过引入因果推理,提升可解释性和稳健性
-
Saxe, Glenn N., et al. "Computational causal discovery for post-traumatic stress in police officers." Translational psychiatry 10.1 (2020): 1-12.
简介:通过因果发现,基于观察数据,找出心理疾病的成因