Pyramid Adversarial Training Improves ViT Performance

本文提出了金字塔对抗训练(Pyramid AT),可以提高VIT的整体性能。将其与一个“匹配的”Dropout和随机深度正则化配对,该正则化对干净和对抗样本采用相同的Dropout和随机深度配置。

金字塔对抗训练打破了VIT和相关架构的分布内准确性和分布外鲁棒性之间的平衡。金字塔攻击旨在以一种结构化的、可控的方式(类似于增强亮度)对图像进行大编辑,并以一种灵活的方式(类似于像素对手)对图像进行小编辑。

主要贡献:

  1. 第一个证明了对抗性训练在ImageNet和分布外的ImageNet鲁棒数据集上提高ViT模型性能
  2. 证明了匹配Dropout和随机深度对于ViT对抗性训练的重要性。
  3. 设计金字塔对抗性训练来生成多尺度、结构化的对抗性扰动,它在非对抗性基线和像素扰动对抗性训练上取得了显著的性能增益。
  4. 建立了ImageNet-C、ImageNet-R和ImageNet-Sketch的新技术状态,而不需要额外的数据,只使用我们的金字塔对抗性训练和标准的vitb /16框架。通过加入额外的ImageNet-21K数据来进一步改善我们的结果
  5. 我们执行大量消融,突出关键性能的几个因素。

方法

对抗训练

为了弥补一般对抗训练clear accuracy比较低的缺点,用以下目标对干净和对抗图像进行训练:

 该目标使用对抗性图像作为正则化或数据增强的一种形式,以迫使网络朝着某些对非分布数据表现良好的表示方式发展。

Pyramid AT 

动机:我们的主要动机是设计一种两全的攻击:低量级的灵活组件和高量级的结构化组件;
这种攻击可以导致较大的图像差异,同时仍然保留类身份。

方法:

  设置的攻击:

对于像素攻击和金字塔攻击,我们对使用多个步骤[35]的随机标签使用投影梯度下降(PGD)。
关于损失,我们观察到,对于ViT,最大化真实标签的负损失会导致攻击性标签泄漏[29],即网络学习预测对抗性攻击,并在扰动后的图像上表现更好。
为了避免这种情况,我们选择一个随机标签,然后最小化[29]中描述的针对该随机标签的softmax交叉熵损失。

“Matched” Dropout and Stochastic Depth

ViT模型的标准训练使用Dropout和随机深度作为正则化器。在对抗性训练中,我们有一个小批量的干净样本和对抗性样本。这就提出了对抗性训练(像素或金字塔)中的Dropout处理问题。

对于小批处理中的每个训练实例,干净分支只更新网络的子集,而对抗分支更新整个网络。
因此,对抗性分支更新在评估过程中与模型性能更紧密地结合在一起,从而导致对抗性精度的提高,但代价是clean accuracy。目标函数:

 M(θ)表示具有随机Dropout掩码和随机深度构型的网络。
为了解决上述问题,我们建议使用“匹配的”Dropout对ViT进行对抗性训练,即对干净的和对抗性训练分支使用相同的Dropout配置(以及对抗性样本的生成)。

实验

在ImageNet-1K、ImageNet-21K进行训练,

在两个变体ImageNet-ReaL(重新标记原始ImageNet的验证集,以纠正标记错误)、ImageNet-V2(它收集ImageNet的另一个版本的评估集。)评估in-distribution performance 。

在以下6个数据集上面进行out-of-distribution 鲁棒性:

  • ImageNetA(将ImageNet对象放置在不寻常的上下文中或方向;)
  • ImageNet-C(它应用了一系列损坏)
  • ImageNet-Rendition(包含该对象的抽象或呈现版本的;)
  • ObjectNet(由大量不同背景、旋转和成像视点组成的大型真实世界集合;)
  • ImageNet-Sketch(包含了对象的艺术素描;)
  • Stylized ImageNet(处理ImageNet图像与样式传输从一个不相关的源图像。)

PixelAT模型倾向于紧紧地“捕捉”它的注意力到感知的对象上,忽略了大部分的背景。具体来说,PixelAT模型可能会低估物体的大小或形状,只关注物体的一部分而不是整体。

与baseline model 相比,金字塔模型的表示侧重于形状,对纹理的敏感性较低
 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值