如图,这是地球🌏的竖剖面,向上为北极方向。黑点为地表上的某一测控站,红白二点表示同一海拔高度的两个空间目标。理想情况下,测控站向北延俯仰角为零看去刚好能观测到白点,显然,“白点-地心-黑点”所成的夹角是容易计算的。然而,由于山脉,树木等的遮挡,测控设备往往存在一个遮蔽角,即“白点-黑点-红点”夹角。此时,如何计算“红点-地心-黑点”夹角?这个问题可以归纳为纯几何问题,即——已知钝角三角形的钝角及其对边和另外任意一个边,求已知的这两个边的夹角。
犹记得,当年参加高考,刚拿到数学试卷,翻过来扫视一眼,马上就看到了一个大题——请证明余弦定理!比较庆幸的是高考前一个月,我们数学老师刚好在课堂上讲过用几何法证明余弦定理,所以这道题也帮助本人成功考上大学。为什么要说这个小故事呢?因为上面提出的问题正是用余弦定理解决工程问题的经典案例。下面详细介绍其原理和算法:
首先,什么是余弦定理?对于任意三角形,有以下表达式:
其次,定义“红点-地心”为边a, “黑点-地心”为边b,“红点-黑点”为边c,要计算的“红点-地心-黑点”夹角为γ。
将已知变量带入余弦定理,即公式(1),可以得到一个一元二次方程,这个方程的二次项系数、一次项系数、常数项分别为:
A = 1
B = -2b*cos(α)
C = b*b - a*a
注意,这里α为遮蔽角+90度。
然后,用求根公式计算边c:
显然,应该舍弃永远为负值的那个解,所以边c的唯一解为:
既然已经知道了三角形的三个边长,那么带入余弦定理公式(3),即可求出“红点-地心-黑点”夹角γ。
C++代码实现如下:
#include <iostream>
#include <cmath>
using namespace std;
#define PI 3.1415926535897932384626433832795
#define DEG2RAD(x) ((x)/180.0*PI)
#define RAD2DEG(x) ((x)/PI*180.0)
//已知钝角三角形的钝角及其对边和另外任意一个边,求已知的这两个边的夹角
double CalAngle(double aLine, double bLine, double alphaDeg)
{
//根据余弦定理求边长c
double a = 1; //二元一次方程的系数
double alphaRad = DEG2RAD(alphaDeg);
double b = cos(alphaRad) * (-2) * bLine; //二元一次方程的系数
double c = bLine * bLine - aLine * aLine; //二元一次方程的系数
double tmp = sqrt(b * b - 4 * a * c);
double x1 = ((-1 * b) + tmp) / (2 * a);
//double x2 = ((-1 * b) - tmp) / (2 * a); //x2必然未负值,所以舍弃
double cLine = x1;
double gammaRad = acos((aLine * aLine + bLine * bLine - cLine * cLine) / (2 * aLine * bLine));
double gammaDeg = RAD2DEG(gammaRad);
return gammaDeg;
}
int main()
{
double gamma = CalAngle(36371, 6371, 105);
cout << "gamma = " << gamma << endl;
}
运行结果如下:
为了验证该算法的正确性,用matlab输入三角形三个边长,计算三个角度,代码如下:
clear all;
a = 36371; b = 6371; c = 34197.667473781417;
A = acosd((b^2 + c^2 - a^2) / (2 * b * c));
B = acosd((c^2 + a^2 - b^2) / (2 * c * a));
C = acosd((a^2 + b^2 - c^2) / (2 * a * b));
disp(['A = ', num2str(A)]); disp(['B = ', num2str(B)]); disp(['C = ', num2str(C)]);
结果如下:
总结:已知钝角三角形的钝角及其对边和另外任意一个边,求已知的这两个边的夹角。解决这个问题的核心思路是调用两次余弦定理公式,先通过解一元二次方程把第三个边长计算出来,再计算夹角。