R语言实现网状Meta分析(1)

#R语言实现网状Meta
library(gemtc)
help(package="gemtc")
data<-gemtc::smoking #注意按照实例格式编写数据
net<-mtc.network(data$data.ab) 
#网状图
plot(net,mode="circle",displaylabels=T,boxed.label=F)
summary(net)
#网状model
model<-mtc.model(net,type="consistency",#"consistency", "regression", "nodesplit", "ume", or "use")
                 n.chain=4,#Number of chains in the model
                 likelihood="binom",#The likelihood to be used. If unspecified, a suitable likelihood will be inferred for the given data.
                 link="logit",#The link function to be used. If unspecified, a suitable link function will be inferred for the given data.
                 linearModel="random")#"random" or "fixed"
#软件选取及迭代
result<-mtc.run(model,
                sample="rjags",#采样方法"rjags"
                n.adapt=20000,#自适应(或调整)迭代次数
                n.iter=5000,#模拟迭代次数
                thin=1)#间隔
summary(result)
#绘制森林图
forest(relative.effect(result,"A"))
#收敛诊断图
par(mfrow=c(2,2))
gelman.plot(result,auto.layout = F)
#轨迹和密度图
plot(result)
#排序图
ranks<-rank.probability(result)
sucra(ranks)
plot(ranks)
plot(ranks,beside=T)
#联赛表
liansai<-relative.effect.table(result)
library(xlsx)
write.xlsx(liansai,file="联赛图.xlsx")
#异质性检验
hererogeneity<-mtc.anohe(net)
hereo<-summary(hererogeneity)
plot(hereo)#敏感性分析森林图

 结果解读:

上述,节点A、B、C、D代表不同的干预措施,连线代表两种干预措施间有直接比较。形成闭环代表有间接比较。

 

 上述,与A比较,B、C、D的OR值和置信区间。

上述, Gelman-Rubin-Brooks 收敛诊断图。经22000次迭代,趋向于1,且PSRF为1,效果最好。

 

 上述左边为轨迹图和右侧密度图。轨迹图达到重叠面积占波动的大部分,肉眼不能识别波动时效果最好。密度图达到接近正态分布时效果最好。

 上述为排序图,分别是堆叠图和直条图,颜色由浅入深,代表排位由先到后,柱形越高,代表排位越高的可能性越大。因此D>C>B>A。

上述为敏感性分析森林图,研究异质性。

具体图形解读可参考文献:易跃雄,张蔚,刘小媛等.网状Meta分析图形结果解读[J].中国循证医学杂志,2015,15(01):103-109.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值