MATLAB的语音信号采集与处理分析

1、基本描述

        本文描述的系统是一个全面而精细的语音信号处理平台,核心组件由MATLAB的高级功能模块构建而成。系统的核心交互界面,借助于MATLAB的uifigure函数搭建,为用户提供了一个直观且响应迅速的操作环境。通过设计的GUI按钮,如“录音”、“FFT频谱图”、“叠加噪声”、“巴特沃斯滤波器”、“小波分解去噪”及“播放录音”,用户可以便捷地触发各项信号处理功能,实现从信号采集到分析,再到噪声控制与滤波的操作。

        在信号处理中,设计的这个系统采用了当前先进的算法和技术。录音模块使用的是MATLAB的audiorecorder,以保证高质量的音频信号实时采集。FFT频谱分析模块则通过快速傅立叶变换,提供了对信号频域特性的可视化处理。噪声叠加模块是采用了引入随机噪声的方式,以模拟真实环境中的噪声干扰。滤波部分使用的是巴特沃斯滤波器,有效去除信号中的噪声成分,提升信号的清晰度。最后是使用小波变换和阈值处理技术,对信号进一步的优化处理。

        为了保证系统的实用性和灵活性,数据存储与读取功能使用了audiowrite和audioread函数,支持信号的保存与加载,方便用户在不同会话间共享和复用数据。最后,音频播放功能通过sound函数,允许用户随时监听原始信号及处理后的结果,确保处理效果符合预期,同时也为系统的人机交互体验增添了直观的听觉反馈。

        语音系统的GUI部分设计遵循简洁直观的原则,采用MATLAB内置的UI元素,包括按钮和绘图区域。绘图区域用于显示信号的时域波形和频域特性,可以更加直观理解信号的变化。Matlab生成的可视化操作界面如下所示。

2、功能效果展示

2.1、FFT频谱

        通过对采集到的语音信号执行快速傅里叶变换(FFT),成功地获取了信号的频谱图,如下图所示。频谱图清晰地展示了信号在不同频率上的能量分布情况。从频谱图中可以看出,语音信号主要集中在较低的频率范围内,这与人类语音的声学特性相符。

2.2、噪声叠加处理

        语音信号经过噪声叠加处理后,在语音信号的波形图上明显出现了噪声的叠加效果。通过观察如下图所示的实验结果图,可以发现信号波形中增加了随机波动,这些波动代表了叠加的噪声成分。

2.3、巴特沃斯滤波处理

        如下图所示的实验结果图,原本含有噪声的语音信号经过巴特沃斯滤波处理后,其波形图显示出了明显的改善。噪声成分得到了有效的抑制,信号的清晰度显著提升。通过巴特沃斯滤波器,成功地降低了语音信号中的噪声水平,提高了信号质量。

2.4、小波分解处理

        通过下图所示的波形图,可以观察到去噪后的信号保留了原始信号的主要特征,同时消除了大部分噪声。这种效果在频谱图上也有所体现,其中高频噪声成分被显著抑制,而信号的主体频谱得以保留。

3、程序源码

        在运行程序代码时,所需的模组组件必须安装并正常运行,否则运行会出现问题。

function varargout = yuyinshuzhixinhao(varargin)

    % Initialize GUI
    fig = uifigure('Name', '语音信号处理');

    % Create buttons
    btnRecord = uibutton(fig, 'push', 'Text', '录音', ...
        'Position', [150, 300, 120, 30], ...
        'ButtonPushedFcn', @(btnRecord, event) recordButtonCallback());

    btnFFT = uibutton(fig, 'push', 'Text', 'FFT频谱图', ...
        'Position', [300, 300, 120, 30], ...
        'ButtonPushedFcn', @(btnFFT, event) fftButtonCallback());

    btnNoise = uibutton(fig, 'push', 'Text', '叠加噪声', ...
        'Position', [450, 300, 120, 30], ...
        'ButtonPushedFcn', @(btnNoise, event) noiseButtonCallback());

    btnFilter = uibutton(fig, 'push', 'Text', '巴特沃斯滤波器', ...
        'Position', [600, 300, 120, 30], ...
        'ButtonPushedFcn', @(btnFilter, event) filterButtonCallback());

    btnWavelet = uibutton(fig, 'push', 'Text', '小波分解去噪', ...
        'Position', [750, 300, 120, 30], ...
        'ButtonPushedFcn', @(btnWavelet, event) waveletButtonCallback());
    
    btnPlay = uibutton(fig, 'push', 'Text', '播放录音', ...
        'Position', [900, 300, 120, 30], ...
        'ButtonPushedFcn', @(btnPlay, event) playButtonCallback());

    % Create axes for plotting
    ax1 = uiaxes(fig, 'Position', [50, 50, 400, 200]);
    ax2 = uiaxes(fig, 'Position', [500, 50, 400, 200]);

    % Callback functions
    function recordButtonCallback()
        recObj = audiorecorder;
        disp('Start speaking.');
        recordblocking(recObj, 5);
        disp('End of Recording.');
        play(recObj);
        myRecording = getaudiodata(recObj);
        plot(ax1, myRecording);
        title(ax1, '录音波形');
        xlabel(ax1, '时间');
        ylabel(ax1, '幅度');
        % Save the recording to a file
        filename = 'data1.wav';
        audiowrite(filename, myRecording, 8000);
    end

    function fftButtonCallback()
        filename = 'data1.wav';
        [x, fs] = audioread(filename);
        y1 = fft(x, 1024);
        f = fs * (0:511) / 1024;

        % Plot FFT spectrum
        plot(ax2, f, abs(y1(1:512)));
        title(ax2, 'FFT频谱');
        xlabel(ax2, '频率/Hz');
        ylabel(ax2, '幅度');
    end

    function noiseButtonCallback()
        filename = 'data1.wav';
        [x, fs] = audioread(filename);
        x1 = 0.1 * randn(length(x), 2);
        x2 = x1 + x;
        sound(x2, fs);

        y1 = fft(x, 1024);
        y2 = fft(x2, 1024);
        f = fs * (0:511) / 1024;

        % Plot the original and noisy signals
        plot(ax1, x);
        title(ax1, '原始语音信号时域图');
        xlabel(ax1, '时间');
        ylabel(ax1, '幅度');

        plot(ax2, abs(y1(1:512)));
        title(ax2, '原始信号频谱');
        xlabel(ax2, '频率/Hz');
        ylabel(ax2, '幅度');

        % Plot noisy signal in the second subplot
        hold(ax2, 'on');
        plot(ax2, abs(y2(1:512)), 'r');
        hold(ax2, 'off');
        legend(ax2, '原始信号', '加噪信号');
    end

    function filterButtonCallback()
        filename = 'data1.wav';
        [x, fs] = audioread(filename);
        wp = 0.1 * pi;
        ws = 0.4 * pi;
        Rp = 1;
        Rs = 15;
        [N, Wn] = ellipord(wp / pi, ws / pi, Rp, Rs);
        [b, a] = ellip(N, Rp, Rs, Wn);
        f1 = filter(b, a, x);
        sound(f1, fs);
        y1 = fft(x, 1024);
        y2 = fft(f1, 1024);
        f = fs * (0:511) / 1024;

        % Plot the filtered signal
        plot(ax1, x);
        title(ax1, '滤波前的时域波形');
        xlabel(ax1, '时间');
        ylabel(ax1, '幅度');

        plot(ax2, abs(y1(1:512)));
        title(ax2, '滤波前的频谱');
        xlabel(ax2, '频率/Hz');
        ylabel(ax2, '幅度');

        % Plot filtered signal in the second subplot
        hold(ax2, 'on');
        plot(ax2, abs(y2(1:512)), 'r');
        hold(ax2, 'off');
        legend(ax2, '滤波前', '滤波后');
    end

    function waveletButtonCallback()
        if license('test', 'Wavelet_Toolbox')
            try
                filename = 'data1.wav';
                [x, fs] = audioread(filename);
                % 小波分解
                n = 10; % 分解层数,可以根据实际情况调整
                wname = 'db2'; % 小波基函数,可以尝试不同的基函数
                [C, L] = wavedec(x, n, wname);
                % 估计噪声标准差
                sigma = wnoisest(C, L, 1);
                % 计算阈值
                alpha = 2; % 阈值调节因子
                thr = wbmpen(C, L, sigma, alpha);
                keepapp = 1; % 是否保留近似系数
                % 软阈值去噪
                yb = wdencmp('gbl', C, L, wname, n, thr, 's', keepapp);
                
                plot(ax1, x);
                title(ax1, '原始语言信号');
                xlabel(ax1, '时间');
                ylabel(ax1, '幅度');

                plot(ax2, yb);
                title(ax2, '去噪后的语言信号');
                xlabel(ax2, '时间');
                ylabel(ax2, '幅度');
            catch ME
                uialert(fig, sprintf('An error occurred: %s', ME.message), 'Error');
            end
            % 在这里添加播放去噪后信号的代码
            sound(yb, fs); % `yb` 是去噪后的信号,`fs` 是采样率
        else
            uialert(fig, 'Wavelet Toolbox is not installed.', 'Toolbox Error');
        end
    end

    function playButtonCallback()
        filename = 'data1.wav';
        [myRecording, fs] = audioread(filename);
        sound(myRecording, fs);
    end

    % Show the figure
    fig.Visible = 'on';
end
设计要求 1、语音信号采集利用 Windows下的录音机,录制一段自己的话音,时间在1s内然后在Matlab软件平台下,利用函数wavread对语音信号进行采样,记住采样频率采样点数。 2、语音信号的频谱分析Matlab中,可以利用函数fft对信号进行快速傅立叶变换,得到信号的频谱特性,要求学生首先画出语音信号的时域波形,然后对语音信号进行频谱分析。 3、设计数字滤波器画出其频率响应给出各滤波器的性能指标; 给定滤波器的性能指标如下: (1)低通滤波器的性能指标:fb=1000Hz,fc=1200Hz,As=100dB,Ap=1dB, (2)高通滤波器的性能指标:fb=5000Hz,fc=4800Hz, As=100dB,Ap=1dB, (3)带通滤波器的性能指标:fb1=1200Hz,fb2=3000Hz, fc1=1000Hz,fc2=3200Hz, As=100dB,Ap=1dB, 采用窗函数法双线性变换法设计上面要求的3种滤波器,并画出滤波 器的频率响应。 4、用滤波器对信号进行滤波 ,然后用自己设计的滤波器对采集到的信号进行滤波,画出滤波后信号的时域波形及频谱,并对滤波前后的信号进行对比,分析信号的变化; 5、回放语音信号分析滤波前后的语音变化; 6、设计系统界面,为了使编制的程序操作方便,设计处理系统的用户界面,在所设计的系 统界面上可以实现上述要求中的包括采集分析、滤波等全部内容,并能够选 择滤波器的类型,输入滤波器的参数、显示滤波器的频率响应等。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值