牛顿第二定律 (F = ma) 在考研数学中经常以微分方程的形式出现,通常需要结合具体的物理情境建立微分方程模型,然后求解。以下是一些例题,并附带解答过程:
例题1:单摆运动
一个质量为m的质点悬挂在一个长度为l的轻绳上,构成一个单摆。忽略空气阻力,求摆角θ(t)关于时间t的函数。
解:
-
受力分析: 质点受到重力mg和绳子的张力T。将重力分解为沿切线方向的分量和沿径向的分量。切线方向的分力为 -mg sinθ。
-
牛顿第二定律: 沿切线方向应用牛顿第二定律,质点的加速度为 l d 2 θ d t 2 l\frac{d^2\theta}{dt^2} ldt2d2θ。因此,有:
m l d 2 θ d t 2 = − m g sin θ ml\frac{d^2\theta}{dt^2} = -mg\sin\theta mldt2d2θ=−mgsinθ
-
简化: 对于小角度摆动 (sinθ ≈ θ),方程简化为:
d 2 θ d t 2 = − g l θ \frac{d^2\theta}{dt^2} = -\frac{g}{l}\theta dt2d2θ=−lgθ
-
求解: 这是一个二阶线性齐次常系数微分方程,其特征方程为 r 2 + g l = 0 r^2 + \frac{g}{l} = 0 r2+lg=0。特征根为 r = ± i g l r = \pm i\sqrt{\frac{g}{l}} r=±ilg。因此,通解为:
θ ( t ) = A cos ( g l t ) + B sin ( g l t ) \theta(t) = A\cos(\sqrt{\frac{g}{l}}t) + B\sin(\sqrt{\frac{g}{l}}t) θ(t)=Acos(lgt)+Bsin(lgt)
其中A和B是待定常数,由初始条件确定 (例如,初始角度和初始角速度)。
例题2:阻尼振动
一个质量为m的物体连接在一个弹簧上,弹簧的劲度系数为k。物体运动受到阻尼力,阻尼力与速度成正比,比例系数为c。求物体位移x(t)关于时间t的函数。
解:
-
受力分析: 物体受到弹簧的回复力(-kx)和阻尼力(-cx’)。
-
牛顿第二定律:
m d 2 x d t 2 = − k x − c d x d t m\frac{d^2x}{dt^2} = -kx - c\frac{dx}{dt} mdt2d2x=−kx−cdtdx
-
改写: 将方程改写为标准形式:
d 2 x d t 2 + c m d x d t + k m x = 0 \frac{d^2x}{dt^2} + \frac{c}{m}\frac{dx}{dt} + \frac{k}{m}x = 0 dt2d2x+mcdtdx+mkx=0
-
求解: 这是一个二阶线性齐次常系数微分方程。特征方程为:
r 2 + c m r + k m = 0 r^2 + \frac{c}{m}r + \frac{k}{m} = 0 r2+mcr+mk=0
特征根的解法取决于判别式 Δ = ( c m ) 2 − 4 k m \Delta = (\frac{c}{m})^2 - 4\frac{k}{m} Δ=(mc)2−4mk 的值。 不同的情况对应着不同的解,例如:
- 欠阻尼 ( Δ < 0 \Delta < 0 Δ<0): 得到振荡衰减解。
- 临界阻尼 ( Δ = 0 \Delta = 0 Δ=0): 得到非振荡衰减解。
- 过阻尼 ( Δ > 0 \Delta > 0 Δ>0): 得到非振荡衰减解。
具体的解需要根据判别式的值计算特征根,然后写出通解,再利用初始条件确定待定常数。
例题3:带外力的简谐运动
一个质量为m的物体连接在一个弹簧上,弹簧的劲度系数为k。物体受到一个外力F(t) = F₀cos(ωt)。求物体位移x(t)关于时间t的函数。
解:
-
受力分析: 物体受到弹簧的回复力(-kx)和外力F₀cos(ωt)。
-
牛顿第二定律:
m d 2 x d t 2 = − k x + F 0 cos ( ω t ) m\frac{d^2x}{dt^2} = -kx + F_0\cos(\omega t) mdt2d2x=−kx+F0cos(ωt)
-
改写:
d 2 x d t 2 + k m x = F 0 m cos ( ω t ) \frac{d^2x}{dt^2} + \frac{k}{m}x = \frac{F_0}{m}\cos(\omega t) dt2d2x+mkx=mF0cos(ωt)
-
求解: 这是一个二阶线性非齐次常系数微分方程。需要先求齐次方程的通解,再求特解 (可以使用待定系数法)。 最终解是齐次解和特解的叠加。 特解的形式与外力的形式有关,这里会涉及到共振的情况(当外力频率等于系统的固有频率时)。
类平抛运动
类平抛运动是指物体在重力作用下,同时受到一个水平方向的初速度或其他水平方向的恒力作用的运动。它与标准平抛运动的区别在于,除了重力外,还存在其他水平方向的力。 解决这类问题,需要分别分析水平方向和竖直方向的运动。
解题步骤:
-
受力分析: 明确物体受到哪些力,特别是水平方向的力。 重力总是竖直向下。
-
建立坐标系: 通常选择水平方向为x轴,竖直方向为y轴。
-
分方向列方程: 根据牛顿第二定律,分别在x方向和y方向列出运动方程。
- x方向: 如果水平方向有恒力F,则有 m a x = F ma_x = F max=F (a_x是水平方向加速度)。如果只有初速度,则 a x = 0 a_x = 0 ax=0。
- y方向: 竖直方向只有重力,则有 m a y = − m g ma_y = -mg may=−mg (a_y是竖直方向加速度,负号表示竖直向下)。
-
求解微分方程: 对加速度积分得到速度,对速度积分得到位移。 需要利用初始条件确定积分常数。
-
结合求解: 得到x(t)和y(t)后,可以消去t,得到物体的运动轨迹方程y=f(x)。
例题5:斜抛运动(带空气阻力)
一个质量为m的物体以速度v₀,仰角为α斜抛,空气阻力与速度成正比,比例系数为k。求物体运动轨迹。
解题思路:
-
受力分析: 物体受到重力mg和空气阻力-kv。 将空气阻力分解到x和y方向。
-
列方程:
- x方向: m d 2 x d t 2 = − k d x d t m\frac{d^2x}{dt^2} = -k\frac{dx}{dt} mdt2d2x=−kdtdx
- y方向: m d 2 y d t 2 = − m g − k d y d t m\frac{d^2y}{dt^2} = -mg - k\frac{dy}{dt} mdt2d2y=−mg−kdtdy
-
求解: 这两个方程是非线性微分方程,求解比较复杂,可能需要数值方法。 如果没有空气阻力,则退化为标准的斜抛运动,可以按照标准方法求解。
水流问题
水流问题通常涉及到流体力学中的概念,例如伯努利方程、连续性方程等。 考研数学中涉及的水流问题往往是简化模型,例如忽略粘滞力等。
常见的简化模型:
-
理想流体: 不可压缩、无粘滞性、无旋转。 在这种情况下,可以应用伯努利方程:
p + 1 2 ρ v 2 + ρ g h = c o n s t p + \frac{1}{2}\rho v^2 + \rho gh = const p+21ρv2+ρgh=const
其中p是压强,ρ是密度,v是速度,g是重力加速度,h是高度。
-
稳态流: 流体的速度不随时间变化。
例题6:水流从水箱流出
一个水箱底部有一个小孔,水从水箱流出。假设水箱足够大,水面高度变化可以忽略。求水流出小孔的速度。
解题思路:
-
应用伯努利方程: 选择水箱水面和水流出小孔两个点。 水面速度近似为零,压强为大气压强;小孔处速度为v,压强也为大气压强。
-
列方程: 根据伯努利方程,有:
p a t m + ρ g h = p a t m + 1 2 ρ v 2 p_{atm} + \rho gh = p_{atm} + \frac{1}{2}\rho v^2 patm+ρgh=patm+21ρv2
-
求解: 可以解得水流出小孔的速度:
v = 2 g h v = \sqrt{2gh} v=2gh
其中h是水面到小孔的高度。
需要注意的是: 以上只是简化模型,实际水流问题可能更复杂,需要考虑粘滞性、紊流等因素。 考研数学中的水流问题往往会给出简化的假设条件,需要根据题目条件选择合适的公式和方法。
总而言之,解决类平抛运动和水流问题,关键在于仔细分析物理情境,选择合适的物理模型和数学方法,并熟练掌握微积分的运算。 对于复杂的模型,数值方法可能更为适用。