目录
一、积分的几何应用
1. 求形心坐标
2. 求弧长
下面举出几道例题:
3. 求旋转曲面的面积(侧面积)
圆的表面积公式为 4·π·r2 。
下面举出几道例题:
二、定积分的物理应用
1. 抽水做功—体积
【必记】:dW = ρ · g · 体积 · 移动距离
例题:
2. 变力沿直线做功
【必记】:dW = F · 移动距离
例题:
3. 静水压力—面积
【必记】:dP = ρ · g · h · 受力面积
例题:
4. 万有引力
【必记】:质量 = 线密度 · 长度 ;万有引力 F = G·m1·m2 / r2
例题:
三、二阶可降阶方程
1. 二阶可降阶微分方程
2. 伯努利方程(了解)
四、微分方程的物理应用
1. 牛顿第二定律(F = ma)
【必记】:F = m·a ;a = d2x/dt2 = dv/dt = v·(dv/dx) ,其中 a = v·(dv/dx) 最常用到。
例题:
2. 变化率
例题:
3. 进出问题
例题:
时间 | 湖中A的含量 |
---|---|
1999年 | 5·m0 |
2000年 | m(t) |
?年 | m0 |
4. 追击问题
例题:
五、形心质心、曲率圆、相关变化率、已知截面求体积
1. 求形心质心
对于均匀物体(ρ 为一个常数),形心就等于质心。
例题:
2. 曲率与曲率半径、曲率圆
【注】:(x2)3/2 = √(x2)3 = √(x6) = |x| 。
例题:曲线 y2 = x 在点 (0,0) 处的曲率圆方程为?
答案:(x-½)2 + y2 = ¼
3. 平行截面面积为已知的立体的体积
例题:
4. 相关变化率
例题: