二重积分的概念和应用(黎曼和)

二重积分的概念是对函数在二维区域上的积分,它扩展了一元积分的思想到更高的维度。 理解二重积分需要分几个步骤:

1. 从一元积分到二重积分的类比:

一元积分 ∫ a b f ( x ) d x \int_a^b f(x) dx abf(x)dx 可以理解为在区间 [ a , b ] [a, b] [a,b] 上,由函数 f ( x ) f(x) f(x) 与 x 轴围成的面积。

二重积分 ∬ D f ( x , y ) d A \iint_D f(x, y) dA Df(x,y)dA 则可以理解为在二维区域 D D D 上,由函数 f ( x , y ) f(x, y) f(x,y) 与 xy 平面围成的体积。 这里 d A dA dA 代表面积元,它可以表示为 d x d y dx dy dxdy d y d x dy dx dydx,取决于积分次序。

2. 积分区域 D:

积分区域 D 可以是各种形状的二维区域,例如:

  • 矩形区域: 例如 D = { ( x , y ) ∣ a ≤ x ≤ b , c ≤ y ≤ d } D = \{(x, y) | a \le x \le b, c \le y \le d\} D={(x,y)axb,cyd}。这种区域的积分计算相对简单。
  • 一般区域: 形状更复杂的区域,可能需要用不等式来描述,例如 D = { ( x , y ) ∣ g 1 ( x ) ≤ y ≤ g 2 ( x ) , a ≤ x ≤ b } D = \{(x, y) | g_1(x) \le y \le g_2(x), a \le x \le b\} D={(x,y)g1(x)yg2(x),axb} (Type I 区域) 或 D = { ( x , y ) ∣ h 1 ( y ) ≤ x ≤ h 2 ( y ) , c ≤ y ≤ d } D = \{(x, y) | h_1(y) \le x \le h_2(y), c \le y \le d\} D={(x,y)h1(y)xh2(y),cyd} (Type II 区域)。 Type I 和 Type II 指的是积分区域的不同表达方式,选择哪种方式取决于积分的方便程度。 更复杂的区域可能需要分割成多个 Type I 或 Type II 区域。

3. 计算二重积分:

计算二重积分通常采用迭代积分的方法,即将二重积分转化为两次一元积分。 具体步骤如下:

  • 确定积分区域 D: 用不等式描述积分区域,并判断是 Type I 还是 Type II 区域(或者需要分割成多个区域)。
  • 选择积分次序: 选择对 x x x 先积分还是对 y y y 先积分,这取决于积分区域的形状和被积函数的复杂度。 选择合适的次序可以简化计算。
  • 进行迭代积分: 按照选择的积分次序,先对其中一个变量积分,将另一个变量视为常数;然后对剩下的变量积分。

例如,对于 Type I 区域,二重积分可以写成:

∬ D f ( x , y ) d A = ∫ a b ∫ g 1 ( x ) g 2 ( x ) f ( x , y ) d y d x \iint_D f(x, y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) dy dx Df(x,y)dA=abg1(x)g2(x)f(x,y)dydx

先对 y y y 积分,再对 x x x 积分。 Type II 区域的迭代积分类似,只是积分次序相反。

4. 应用:

二重积分有很多应用,例如:

  • 计算体积: 这是二重积分最直接的应用,如计算由曲面 z = f ( x , y ) z = f(x, y) z=f(x,y) 和 xy 平面围成的体积。
  • 计算面积: f ( x , y ) = 1 f(x, y) = 1 f(x,y)=1 时,二重积分计算的是区域 D 的面积。
  • 计算平均值: 可以计算函数在区域 D 上的平均值。
  • 物理应用: 例如计算质量、重心、转动惯量等。

5. 极坐标下的二重积分:

对于一些对称性较好的区域,使用极坐标系进行积分会更方便。 在极坐标系下,面积元为 d A = r d r d θ dA = r dr d\theta dA=rdrdθ。 积分的表达式为:

∬ D f ( x , y ) d A = ∫ α β ∫ r 1 ( θ ) r 2 ( θ ) f ( r cos ⁡ θ , r sin ⁡ θ ) r d r d θ \iint_D f(x, y) dA = \int_{\alpha}^{\beta} \int_{r_1(\theta)}^{r_2(\theta)} f(r \cos\theta, r \sin\theta) r dr d\theta Df(x,y)dA=αβr1(θ)r2(θ)f(rcosθ,rsinθ)rdrdθ

其中, α \alpha α β \beta β 是极角的范围, r 1 ( θ ) r_1(\theta) r1(θ) r 2 ( θ ) r_2(\theta) r2(θ) 是区域 D 在极坐标下的边界。

二重积分的求和思想是其定义的基础。它代表将积分区域划分成许多小的矩形,在每个小矩形上用函数值乘以小矩形的面积,然后将所有这些小量加起来。 当矩形数量趋于无穷大,而矩形大小趋于零时,这个和就趋于二重积分的值。 以下我们通过例题说明,展示不同求和方式的转化,但需要注意的是,实际计算中直接用求和计算二重积分非常困难,通常使用迭代积分。 求和方式主要用于理解二重积分的概念。

例题: 计算函数 f ( x , y ) = x + y f(x, y) = x + y f(x,y)=x+y 在区域 D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 } D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\} D={(x,y)∣0x1,0y1} 上的二重积分。

方法一:均匀分割求和

我们将区域 D 均匀地分割成 n x n 个小正方形,每个小正方形的边长为 Δx = Δy = 1/n。 小正方形的面积为 ΔA = (1/n)²。

第 i 行第 j 列的小正方形的左下角坐标为 ( ( i − 1 ) / n , ( j − 1 ) / n ) ((i-1)/n, (j-1)/n) ((i1)/n,(j1)/n),我们用这个点的函数值来近似小正方形上的函数值。 则小正方形上的函数值的和为:

S n = ∑ i = 1 n ∑ j = 1 n f ( i − 1 n , j − 1 n ) Δ A = ∑ i = 1 n ∑ j = 1 n ( i − 1 n + j − 1 n ) 1 n 2 S_n = \sum_{i=1}^n \sum_{j=1}^n f\left(\frac{i-1}{n}, \frac{j-1}{n}\right) \Delta A = \sum_{i=1}^n \sum_{j=1}^n \left(\frac{i-1}{n} + \frac{j-1}{n}\right) \frac{1}{n^2} Sn=i=1nj=1nf(ni1,nj1)ΔA=i=1nj=1n(ni1+nj1)n21

二重积分的值是当 n 趋于无穷大时,这个和的极限:

∬ D ( x + y ) d A = lim ⁡ n → ∞ S n \iint_D (x+y) dA = \lim_{n \to \infty} S_n D(x+y)dA=limnSn

方法二:非均匀分割求和 (概念性说明)

我们可以将区域 D 分割成大小不一的矩形,但这会使计算变得复杂。 假设我们用某种方式划分区域,得到 m m m 个矩形,第 k k k 个矩形的面积为 Δ A k \Delta A_k ΔAk,在该矩形内选择一个点 ( x k ∗ , y k ∗ ) (x_k^*, y_k^*) (xk,yk),则二重积分可以近似表示为:

∬ D ( x + y ) d A ≈ ∑ k = 1 m f ( x k ∗ , y k ∗ ) Δ A k = ∑ k = 1 m ( x k ∗ + y k ∗ ) Δ A k \iint_D (x+y) dA \approx \sum_{k=1}^m f(x_k^*, y_k^*) \Delta A_k = \sum_{k=1}^m (x_k^* + y_k^*) \Delta A_k D(x+y)dAk=1mf(xk,yk)ΔAk=k=1m(xk+yk)ΔAk

当分割的矩形数量趋于无穷大,且每个矩形的最大直径趋于零时,这个近似值趋于二重积分的精确值。 这种方法的计算非常繁琐,因此通常不直接使用。

方法三:蒙特卡洛方法 (数值方法)

蒙特卡洛方法是一种数值方法,它通过随机采样来近似积分值。 我们可以在区域 D 内随机生成 N 个点 ( x i , y i ) (x_i, y_i) (xi,yi),然后计算:

∬ D ( x + y ) d A ≈ A ( D ) N ∑ i = 1 N f ( x i , y i ) = 1 N ∑ i = 1 N ( x i + y i ) \iint_D (x+y) dA \approx \frac{A(D)}{N} \sum_{i=1}^N f(x_i, y_i) = \frac{1}{N} \sum_{i=1}^N (x_i + y_i) D(x+y)dANA(D)i=1Nf(xi,yi)=N1i=1N(xi+yi)

其中 A ( D ) A(D) A(D) 是区域 D 的面积 (本例中为 1)。 这种方法的精度随着 N 的增加而提高,但它只是一种近似计算方法。

迭代积分计算 (实际计算方法)

上述求和方法只用于理解二重积分的概念。实际计算中,我们使用迭代积分:

∬ D ( x + y ) d A = ∫ 0 1 ∫ 0 1 ( x + y ) d y d x = ∫ 0 1 [ x y + 1 2 y 2 ] 0 1 d x = ∫ 0 1 ( x + 1 2 ) d x = [ 1 2 x 2 + 1 2 x ] 0 1 = 1 \iint_D (x+y) dA = \int_0^1 \int_0^1 (x+y) dy dx = \int_0^1 \left[ xy + \frac{1}{2}y^2 \right]_0^1 dx = \int_0^1 \left(x + \frac{1}{2}\right) dx = \left[ \frac{1}{2}x^2 + \frac{1}{2}x \right]_0^1 = 1 D(x+y)dA=0101(x+y)dydx=01[xy+21y2]01dx=01(x+21)dx=[21x2+21x]01=1

在下面这些例子中,我们只展示求和的思路,不会进行复杂的求和运算,因为随着分割数n的增加,计算量会爆炸式增长。 极限运算通常需要用到一些求和公式来简化。

例题 1: 计算函数 f ( x , y ) = x 2 y f(x, y) = x^2y f(x,y)=x2y 在区域 D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 2 } D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 2\} D={(x,y)∣0x1,0y2} 上的二重积分。

  1. 分割: 将区域 D 分割成 n x m 个矩形,其中 Δx = 1/n, Δy = 2/m。 每个矩形的面积为 ΔA = 2/(nm)。

  2. 近似: 在每个矩形内选择一个点来近似函数值。 我们选择左下角的点,其坐标为 ( ( i − 1 ) / n , ( j − 1 ) 2 / m ) ((i-1)/n, (j-1)2/m) ((i1)/n,(j1)2/m),其中 1 ≤ i ≤ n 1 \le i \le n 1in, 1 ≤ j ≤ m 1 \le j \le m 1jm

  3. 求和: 二重积分可以近似为:

    ∬ D x 2 y d A ≈ ∑ i = 1 n ∑ j = 1 m ( i − 1 n ) 2 ( 2 ( j − 1 ) m ) 2 n m \iint_D x^2y dA \approx \sum_{i=1}^n \sum_{j=1}^m \left(\frac{i-1}{n}\right)^2 \left(\frac{2(j-1)}{m}\right) \frac{2}{nm} Dx2ydAi=1nj=1m(ni1)2(m2(j1))nm2

  4. 极限: 二重积分的精确值是当 n 和 m 趋于无穷大时的极限:

    ∬ D x 2 y d A = lim ⁡ n → ∞ , m → ∞ ∑ i = 1 n ∑ j = 1 m ( i − 1 n ) 2 ( 2 ( j − 1 ) m ) 2 n m \iint_D x^2y dA = \lim_{n \to \infty, m \to \infty} \sum_{i=1}^n \sum_{j=1}^m \left(\frac{i-1}{n}\right)^2 \left(\frac{2(j-1)}{m}\right) \frac{2}{nm} Dx2ydA=n,mlimi=1nj=1m(ni1)2(m2(j1))nm2

例题 2: 计算函数 f ( x , y ) = x y f(x, y) = xy f(x,y)=xy 在区域 D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , x ≤ y ≤ 1 } D = \{(x, y) | 0 \le x \le 1, x \le y \le 1\} D={(x,y)∣0x1,xy1} 上的二重积分。

  1. 分割: 这个区域不是矩形,分割起来相对复杂。 我们可以将区域分割成 n 个宽度为 1/n 的竖条,然后每个竖条再分成 m 个小矩形。 这个例子中,我们需要将每一竖条高度进行调整,因为 y 的上限是1,下限是 x。

  2. 近似: 在每个小矩形内,选择左下角的点进行近似。 计算变得较为复杂,因为每一竖条的小矩形高度不一致。

  3. 求和: 该求和表达式将非常复杂,需要考虑每个竖条上小矩形高度的变化。

  4. 极限: 同样,我们需要计算当 n 和 m 趋于无穷大时的极限。

例题 3: 计算函数 f ( x , y ) = 1 f(x, y) = 1 f(x,y)=1 在区域 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } D = \{(x, y) | x^2 + y^2 \le 1\} D={(x,y)x2+y21} 上的二重积分 (单位圆)。

  1. 分割: 将单位圆分割成 n 个同心圆环,每个圆环再分成 m 个扇形。 这需要用到极坐标。 需要注意的是,每个扇形的面积并非完全相等。

  2. 近似: 在每个扇形内选择一个点,或者取扇形平均半径计算面积。

  3. 求和: 这需要用到极坐标下的面积计算,而且由于面积不是均匀的,求和会比较复杂。

  4. 极限: 计算 n 和 m 趋于无穷大时的极限。 这个例子中,使用极坐标进行迭代积分会更加简便。

让我们考虑一个定义在矩形区域 D = [ a , b ] × [ c , d ] D = [a, b] \times [c, d] D=[a,b]×[c,d] 上的函数 f ( x , y ) f(x, y) f(x,y)

  1. 分割: 将区域 D 分割成 n x m 个小矩形。 我们使用均匀分割,则每个小矩形的宽度为 Δ x = b − a n \Delta x = \frac{b - a}{n} Δx=nba,高度为 Δ y = d − c m \Delta y = \frac{d - c}{m} Δy=mdc。 每个小矩形的面积为 Δ A = Δ x Δ y = ( b − a ) ( d − c ) n m \Delta A = \Delta x \Delta y = \frac{(b-a)(d-c)}{nm} ΔA=ΔxΔy=nm(ba)(dc).

  2. 采样点: 在每个小矩形内选择一个采样点。 我们用 ( x i j ∗ , y i j ∗ ) (x_{ij}^*, y_{ij}^*) (xij,yij) 表示第 i 行第 j 列小矩形的采样点。 一种常见的选择是取每个小矩形的左下角点: x i j ∗ = a + ( i − 1 ) Δ x , y i j ∗ = c + ( j − 1 ) Δ y x_{ij}^* = a + (i - 1)\Delta x, \quad y_{ij}^* = c + (j - 1)\Delta y xij=a+(i1)Δx,yij=c+(j1)Δy
    其中 1 ≤ i ≤ n , 1 ≤ j ≤ m 1 \le i \le n, \quad 1 \le j \le m 1in,1jm

  3. 黎曼和: 函数 f(x,y) 在区域 D 上的黎曼和定义为:

    S n m = ∑ i = 1 n ∑ j = 1 m f ( x i j ∗ , y i j ∗ ) Δ A = ∑ i = 1 n ∑ j = 1 m f ( a + ( i − 1 ) Δ x , c + ( j − 1 ) Δ y ) ( b − a ) ( d − c ) n m S_{nm} = \sum_{i=1}^n \sum_{j=1}^m f(x_{ij}^*, y_{ij}^*) \Delta A = \sum_{i=1}^n \sum_{j=1}^m f\left(a + (i - 1)\Delta x, c + (j - 1)\Delta y\right) \frac{(b-a)(d-c)}{nm} Snm=i=1nj=1mf(xij,yij)ΔA=i=1nj=1mf(a+(i1)Δx,c+(j1)Δy)nm(ba)(dc)

  4. 二重积分: 如果当 n → ∞ n \to \infty n m → ∞ m \to \infty m 时,黎曼和 S n m S_{nm} Snm 收敛到一个极限值,则该极限值定义为函数 f(x, y) 在区域 D 上的二重积分:

    ∬ D f ( x , y ) d A = lim ⁡ n → ∞ , m → ∞ S n m = lim ⁡ n → ∞ , m → ∞ ∑ i = 1 n ∑ j = 1 m f ( a + ( i − 1 ) Δ x , c + ( j − 1 ) Δ y ) ( b − a ) ( d − c ) n m \iint_D f(x, y) dA = \lim_{n \to \infty, m \to \infty} S_{nm} = \lim_{n \to \infty, m \to \infty} \sum_{i=1}^n \sum_{j=1}^m f\left(a + (i - 1)\Delta x, c + (j - 1)\Delta y\right) \frac{(b-a)(d-c)}{nm} Df(x,y)dA=n,mlimSnm=n,mlimi=1nj=1mf(a+(i1)Δx,c+(j1)Δy)nm(ba)(dc)

这个公式清晰地展现了如何从 i 和 j 的双重求和 (黎曼和) 转化到二重积分。 需要注意的是,这个极限的存在性需要满足一定的条件(例如,f(x,y) 在 D 上连续或可积)。 不同的采样点选择会得到不同的黎曼和,但如果极限存在,它们都会收敛到相同的二重积分值。

以下展示如何用二重黎曼和逼近二重积分,并体会从离散求和到连续积分的过渡:

例题1:单位正方形上的函数

考虑函数 f ( x , y ) = x 2 y f(x, y) = x^2y f(x,y)=x2y 在单位正方形 D = [ 0 , 1 ] × [ 0 , 1 ] D = [0, 1] \times [0, 1] D=[0,1]×[0,1] 上的二重积分。 使用左下角作为采样点,写出相应的黎曼和,并说明其与二重积分的关系。

解:

  1. 分割: 将单位正方形分成 n x n 个大小相等的小正方形,每个小正方形的边长为 Δ x = Δ y = 1 n \Delta x = \Delta y = \frac{1}{n} Δx=Δy=n1, 面积为 Δ A = 1 n 2 \Delta A = \frac{1}{n^2} ΔA=n21.

  2. 采样点: 左下角的采样点坐标为 ( x i j , y i j ) = ( i − 1 n , j − 1 n ) (x_{ij}, y_{ij}) = \left(\frac{i-1}{n}, \frac{j-1}{n}\right) (xij,yij)=(ni1,nj1), 其中 1 ≤ i , j ≤ n 1 \le i, j \le n 1i,jn.

  3. 黎曼和: 黎曼和为:

    S n = ∑ i = 1 n ∑ j = 1 n f ( i − 1 n , j − 1 n ) Δ A = ∑ i = 1 n ∑ j = 1 n ( i − 1 n ) 2 ( j − 1 n ) 1 n 2 S_n = \sum_{i=1}^n \sum_{j=1}^n f\left(\frac{i-1}{n}, \frac{j-1}{n}\right) \Delta A = \sum_{i=1}^n \sum_{j=1}^n \left(\frac{i-1}{n}\right)^2 \left(\frac{j-1}{n}\right) \frac{1}{n^2} Sn=i=1nj=1nf(ni1,nj1)ΔA=i=1nj=1n(ni1)2(nj1)n21

  4. 二重积分: n → ∞ n \to \infty n, S n S_n Sn 收敛于二重积分:

    ∬ D x 2 y   d A = ∫ 0 1 ∫ 0 1 x 2 y   d x   d y \iint_D x^2y \, dA = \int_0^1 \int_0^1 x^2y \, dx \, dy Dx2ydA=0101x2ydxdy

例题2:三角形区域上的函数

考虑函数 f ( x , y ) = x + 2 y f(x, y) = x + 2y f(x,y)=x+2y 在三角形区域 D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ x } D = \{(x, y) | 0 \le x \le 1, 0 \le y \le x\} D={(x,y)∣0x1,0yx} 上的二重积分。 使用左下角作为采样点,写出相应的黎曼和(可以考虑不均匀分割,使得小矩形的面积不完全相等)。

解: (由于三角形区域,采用均匀分割会比较复杂)

一个简化的办法是,仍然使用 n × n n \times n n×n 的分割,但是只考虑落在三角形区域内的那些小矩形。 小矩形面积仍然为 Δ A = 1 n 2 \Delta A = \frac{1}{n^2} ΔA=n21. 黎曼和则变为:

S n = ∑ i = 1 n ∑ j = 1 i f ( i − 1 n , j − 1 n ) 1 n 2 = ∑ i = 1 n ∑ j = 1 i ( i − 1 n + 2 j − 1 n ) 1 n 2 S_n = \sum_{i=1}^n \sum_{j=1}^i f\left(\frac{i-1}{n}, \frac{j-1}{n}\right) \frac{1}{n^2} = \sum_{i=1}^n \sum_{j=1}^i \left(\frac{i-1}{n} + 2\frac{j-1}{n}\right) \frac{1}{n^2} Sn=i=1nj=1if(ni1,nj1)n21=i=1nj=1i(ni1+2nj1)n21

n → ∞ n \to \infty n,此黎曼和趋近于

∬ D ( x + 2 y )   d A = ∫ 0 1 ∫ 0 x ( x + 2 y )   d y   d x \iint_D (x+2y) \, dA = \int_0^1 \int_0^x (x+2y) \, dy \, dx D(x+2y)dA=010x(x+2y)dydx

例题3:圆形区域上的函数

考虑函数 f ( x , y ) = x 2 + y 2 f(x,y) = x^2 + y^2 f(x,y)=x2+y2 在半径为 1 的圆盘 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } D = \{(x,y) | x^2 + y^2 \le 1\} D={(x,y)x2+y21} 上的二重积分。 这个例子需要用到极坐标,直接用矩形分割比较复杂,所以这里只给出积分的表达,不展开黎曼和的详细推导:

∬ D ( x 2 + y 2 )   d A \iint_D (x^2 + y^2) \, dA D(x2+y2)dA 可以使用极坐标转换方便计算: x = r cos ⁡ θ , y = r sin ⁡ θ , d A = r d r d θ x = r\cos\theta, y = r\sin\theta, dA = r dr d\theta x=rcosθ,y=rsinθ,dA=rdrdθ

以下是一些难度较高的例子,涉及更复杂的区域和函数,需要更巧妙地设计黎曼和来逼近二重积分:

例题1:非矩形区域,非均匀分割

考虑函数 f ( x , y ) = e x 2 + y 2 f(x, y) = e^{x^2 + y^2} f(x,y)=ex2+y2 在区域 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 , x ≥ 0 , y ≥ 0 } D = \{(x, y) | x^2 + y^2 \le 1, x \ge 0, y \ge 0\} D={(x,y)x2+y21,x0,y0} (单位圆的右上角四分之一) 上的二重积分。 设计一个黎曼和来逼近这个积分。由于区域是圆形,均匀矩形分割不理想,考虑极坐标转换:

解: 使用极坐标转换, x = r cos ⁡ θ , y = r sin ⁡ θ x = r\cos\theta, y = r\sin\theta x=rcosθ,y=rsinθ, 区域变为 0 ≤ r ≤ 1 , 0 ≤ θ ≤ π 2 0 \le r \le 1, 0 \le \theta \le \frac{\pi}{2} 0r1,0θ2π. 我们可以将区域分割成 n 个扇形,每个扇形的角度为 Δ θ = π 2 n \Delta \theta = \frac{\pi}{2n} Δθ=2nπ, 再将每个扇形沿径向分割成 m 个同心圆环,每个圆环的宽度为 Δ r = 1 m \Delta r = \frac{1}{m} Δr=m1. 则每个小区域的面积近似为 $ \Delta A_{ij} = \frac{1}{2} r_i \Delta r \Delta \theta$, 其中 r i = i m r_i = \frac{i}{m} ri=mi, 1 ≤ i ≤ m 1 \le i \le m 1im, 1 ≤ j ≤ n 1 \le j \le n 1jn.

黎曼和为:

S m n = ∑ j = 1 n ∑ i = 1 m e r i 2 1 2 r i Δ r Δ θ = ∑ j = 1 n ∑ i = 1 m e ( i m ) 2 1 2 i m 1 m π 2 n S_{mn} = \sum_{j=1}^n \sum_{i=1}^m e^{r_i^2} \frac{1}{2} r_i \Delta r \Delta \theta = \sum_{j=1}^n \sum_{i=1}^m e^{\left(\frac{i}{m}\right)^2} \frac{1}{2} \frac{i}{m} \frac{1}{m} \frac{\pi}{2n} Smn=j=1ni=1meri221riΔrΔθ=j=1ni=1me(mi)221mim12nπ

m , n → ∞ m, n \to \infty m,n, S m n S_{mn} Smn收敛于:

∫ 0 π / 2 ∫ 0 1 e r 2 r   d r   d θ \int_0^{\pi/2} \int_0^1 e^{r^2} r \, dr \, d\theta 0π/201er2rdrdθ

例题2:分段函数

考虑函数

f ( x , y ) = { 1 if  x 2 + y 2 ≤ 1 0 otherwise f(x, y) = \begin{cases} 1 & \text{if } x^2 + y^2 \le 1 \\ 0 & \text{otherwise} \end{cases} f(x,y)={10if x2+y21otherwise

在区域 D = [ − 2 , 2 ] × [ − 2 , 2 ] D = [-2, 2] \times [-2, 2] D=[2,2]×[2,2] 上的二重积分。 设计一个黎曼和来逼近这个积分。

解: 这个函数表示单位圆内的值为 1,其余为 0。 可以用均匀矩形分割。设每个小矩形的边长为 Δ x = Δ y = 4 n \Delta x = \Delta y = \frac{4}{n} Δx=Δy=n4. 黎曼和为:

S n = ∑ i = 1 n ∑ j = 1 n f ( x i , y j ) ( 4 n ) 2 S_n = \sum_{i=1}^n \sum_{j=1}^n f(x_i, y_j) \left(\frac{4}{n}\right)^2 Sn=i=1nj=1nf(xi,yj)(n4)2

其中 ( x i , y j ) (x_i, y_j) (xi,yj) 是每个小矩形的中心点。 当 n 趋于无穷大时,黎曼和收敛于单位圆的面积 π \pi π. 这里体现了黎曼和可以计算区域的面积。

例题3:条件限制的区域

考虑函数 f ( x , y ) = x y f(x, y) = xy f(x,y)=xy 在区域 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 , x ≥ y } D = \{(x, y) | x^2 + y^2 \le 1, x \ge y\} D={(x,y)x2+y21,xy} 上的二重积分。 设计一个黎曼和来逼近该积分。 这个区域是单位圆的一半,由直线 y=x 分割。 可以利用极坐标或根据区域形状设计非均匀分割。

这些例题的难度在于:

  • 复杂的区域: 需要巧妙地分割区域,以便更好地逼近积分。
  • 非均匀分割: 均匀分割可能效率低下,需要考虑非均匀分割。
  • 复杂的函数: 函数本身可能难以直接计算,需要使用近似方法。

以下是几道关于黎曼和逼近二重积分的例题,难度递增:

例题1:三角形区域上的简单函数

计算函数 f ( x , y ) = x + y f(x, y) = x + y f(x,y)=x+y 在三角形区域 D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ x } D = \{(x, y) | 0 \le x \le 1, 0 \le y \le x\} D={(x,y)∣0x1,0yx} 上的二重积分。 使用黎曼和进行近似计算。

解题思路: 可以将三角形区域划分成若干个小矩形。由于区域形状不规则,需要仔细处理边界上的小矩形。 可以采用均匀分割,也可以根据需要进行非均匀分割以提高精度。 黎曼和的表达式将会是:

S m n = ∑ i = 1 m ∑ j = 1 n f ( x i j , y i j ) Δ x Δ y S_{mn} = \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}, y_{ij}) \Delta x \Delta y Smn=i=1mj=1nf(xij,yij)ΔxΔy

其中, x i j x_{ij} xij y i j y_{ij} yij 是第 i i i 行第 j j j 个小矩形的坐标, Δ x \Delta x Δx Δ y \Delta y Δy 是小矩形的边长。 随着 m m m n n n 趋于无穷大,黎曼和将收敛到二重积分的值。

例题2:圆形区域上的复杂函数

计算函数 f ( x , y ) = e − ( x 2 + y 2 ) f(x, y) = e^{-(x^2 + y^2)} f(x,y)=e(x2+y2) 在单位圆盘 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } D = \{(x, y) | x^2 + y^2 \le 1\} D={(x,y)x2+y21}上的二重积分。 使用极坐标和黎曼和进行近似计算。

解题思路: 由于区域是圆形,使用极坐标转换会简化计算。 将圆盘划分成若干个极坐标下的扇形小区域。 黎曼和的表达式将会是:

S m n = ∑ i = 1 m ∑ j = 1 n f ( r i cos ⁡ θ j , r i sin ⁡ θ j ) r i Δ r Δ θ S_{mn} = \sum_{i=1}^m \sum_{j=1}^n f(r_i \cos \theta_j, r_i \sin \theta_j) r_i \Delta r \Delta \theta Smn=i=1mj=1nf(ricosθj,risinθj)riΔrΔθ

其中, r i r_i ri$ 和 $ θ j \theta_j θj 分别表示极径和极角的划分点, Δ r \Delta r Δr Δ θ \Delta \theta Δθ 分别表示极径和极角的步长。 这个例子中,函数具有对称性,可以利用对称性简化计算。

例题3:分段函数和不规则区域

计算函数 f ( x , y ) = { 1 if  x 2 + y 2 ≤ 1  and  x ≥ 0 0 otherwise f(x, y) = \begin{cases} 1 & \text{if } x^2 + y^2 \le 1 \text{ and } x \ge 0 \\ 0 & \text{otherwise} \end{cases} f(x,y)={10if x2+y21 and x0otherwise 在区域 D = { ( x , y ) ∣ − 2 ≤ x ≤ 2 , − 2 ≤ y ≤ 2 } D = \{(x, y) | -2 \le x \le 2, -2 \le y \le 2\} D={(x,y)2x2,2y2} 上的二重积分。 使用黎曼和进行近似计算。

解题思路: 这是一个分段函数,并且区域包含单位圆的一半。 需要根据函数的定义和区域的形状进行合适的划分。 可以将区域划分成矩形,然后根据每个小矩形是否落在函数值为 1 的区域内来计算黎曼和。 由于函数是不连续的,需要特别注意处理边界的情况。 此题需要灵活运用黎曼和的定义,并结合分段函数和区域的几何特性来进行计算。

这些例题的难度逐渐增加,涵盖了不同类型的函数和区域,旨在帮助更好地理解黎曼和在逼近二重积分中的应用。 记住,实际计算中,数值积分方法通常比直接计算黎曼和更有效率,但理解黎曼和的原理对于掌握二重积分的概念至关重要。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值