二重积分的概念是对函数在二维区域上的积分,它扩展了一元积分的思想到更高的维度。 理解二重积分需要分几个步骤:
1. 从一元积分到二重积分的类比:
一元积分 ∫ a b f ( x ) d x \int_a^b f(x) dx ∫abf(x)dx 可以理解为在区间 [ a , b ] [a, b] [a,b] 上,由函数 f ( x ) f(x) f(x) 与 x 轴围成的面积。
二重积分 ∬ D f ( x , y ) d A \iint_D f(x, y) dA ∬Df(x,y)dA 则可以理解为在二维区域 D D D 上,由函数 f ( x , y ) f(x, y) f(x,y) 与 xy 平面围成的体积。 这里 d A dA dA 代表面积元,它可以表示为 d x d y dx dy dxdy 或 d y d x dy dx dydx,取决于积分次序。
2. 积分区域 D:
积分区域 D 可以是各种形状的二维区域,例如:
- 矩形区域: 例如 D = { ( x , y ) ∣ a ≤ x ≤ b , c ≤ y ≤ d } D = \{(x, y) | a \le x \le b, c \le y \le d\} D={(x,y)∣a≤x≤b,c≤y≤d}。这种区域的积分计算相对简单。
- 一般区域: 形状更复杂的区域,可能需要用不等式来描述,例如 D = { ( x , y ) ∣ g 1 ( x ) ≤ y ≤ g 2 ( x ) , a ≤ x ≤ b } D = \{(x, y) | g_1(x) \le y \le g_2(x), a \le x \le b\} D={(x,y)∣g1(x)≤y≤g2(x),a≤x≤b} (Type I 区域) 或 D = { ( x , y ) ∣ h 1 ( y ) ≤ x ≤ h 2 ( y ) , c ≤ y ≤ d } D = \{(x, y) | h_1(y) \le x \le h_2(y), c \le y \le d\} D={(x,y)∣h1(y)≤x≤h2(y),c≤y≤d} (Type II 区域)。 Type I 和 Type II 指的是积分区域的不同表达方式,选择哪种方式取决于积分的方便程度。 更复杂的区域可能需要分割成多个 Type I 或 Type II 区域。
3. 计算二重积分:
计算二重积分通常采用迭代积分的方法,即将二重积分转化为两次一元积分。 具体步骤如下:
- 确定积分区域 D: 用不等式描述积分区域,并判断是 Type I 还是 Type II 区域(或者需要分割成多个区域)。
- 选择积分次序: 选择对 x x x 先积分还是对 y y y 先积分,这取决于积分区域的形状和被积函数的复杂度。 选择合适的次序可以简化计算。
- 进行迭代积分: 按照选择的积分次序,先对其中一个变量积分,将另一个变量视为常数;然后对剩下的变量积分。
例如,对于 Type I 区域,二重积分可以写成:
∬ D f ( x , y ) d A = ∫ a b ∫ g 1 ( x ) g 2 ( x ) f ( x , y ) d y d x \iint_D f(x, y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) dy dx ∬Df(x,y)dA=∫ab∫g1(x)g2(x)f(x,y)dydx
先对 y y y 积分,再对 x x x 积分。 Type II 区域的迭代积分类似,只是积分次序相反。
4. 应用:
二重积分有很多应用,例如:
- 计算体积: 这是二重积分最直接的应用,如计算由曲面 z = f ( x , y ) z = f(x, y) z=f(x,y) 和 xy 平面围成的体积。
- 计算面积: 当 f ( x , y ) = 1 f(x, y) = 1 f(x,y)=1 时,二重积分计算的是区域 D 的面积。
- 计算平均值: 可以计算函数在区域 D 上的平均值。
- 物理应用: 例如计算质量、重心、转动惯量等。
5. 极坐标下的二重积分:
对于一些对称性较好的区域,使用极坐标系进行积分会更方便。 在极坐标系下,面积元为 d A = r d r d θ dA = r dr d\theta dA=rdrdθ。 积分的表达式为:
∬ D f ( x , y ) d A = ∫ α β ∫ r 1 ( θ ) r 2 ( θ ) f ( r cos θ , r sin θ ) r d r d θ \iint_D f(x, y) dA = \int_{\alpha}^{\beta} \int_{r_1(\theta)}^{r_2(\theta)} f(r \cos\theta, r \sin\theta) r dr d\theta ∬Df(x,y)dA=∫αβ∫r1(θ)r2(θ)f(rcosθ,rsinθ)rdrdθ
其中, α \alpha α 和 β \beta β 是极角的范围, r 1 ( θ ) r_1(\theta) r1(θ) 和 r 2 ( θ ) r_2(\theta) r2(θ) 是区域 D 在极坐标下的边界。
二重积分的求和思想是其定义的基础。它代表将积分区域划分成许多小的矩形,在每个小矩形上用函数值乘以小矩形的面积,然后将所有这些小量加起来。 当矩形数量趋于无穷大,而矩形大小趋于零时,这个和就趋于二重积分的值。 以下我们通过例题说明,展示不同求和方式的转化,但需要注意的是,实际计算中直接用求和计算二重积分非常困难,通常使用迭代积分。 求和方式主要用于理解二重积分的概念。
例题: 计算函数 f ( x , y ) = x + y f(x, y) = x + y f(x,y)=x+y 在区域 D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 } D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 1\} D={(x,y)∣0≤x≤1,0≤y≤1} 上的二重积分。
方法一:均匀分割求和
我们将区域 D 均匀地分割成 n x n 个小正方形,每个小正方形的边长为 Δx = Δy = 1/n。 小正方形的面积为 ΔA = (1/n)²。
第 i 行第 j 列的小正方形的左下角坐标为 ( ( i − 1 ) / n , ( j − 1 ) / n ) ((i-1)/n, (j-1)/n) ((i−1)/n,(j−1)/n),我们用这个点的函数值来近似小正方形上的函数值。 则小正方形上的函数值的和为:
S n = ∑ i = 1 n ∑ j = 1 n f ( i − 1 n , j − 1 n ) Δ A = ∑ i = 1 n ∑ j = 1 n ( i − 1 n + j − 1 n ) 1 n 2 S_n = \sum_{i=1}^n \sum_{j=1}^n f\left(\frac{i-1}{n}, \frac{j-1}{n}\right) \Delta A = \sum_{i=1}^n \sum_{j=1}^n \left(\frac{i-1}{n} + \frac{j-1}{n}\right) \frac{1}{n^2} Sn=∑i=1n∑j=1nf(ni−1,nj−1)ΔA=∑i=1n∑j=1n(ni−1+nj−1)n21
二重积分的值是当 n 趋于无穷大时,这个和的极限:
∬ D ( x + y ) d A = lim n → ∞ S n \iint_D (x+y) dA = \lim_{n \to \infty} S_n ∬D(x+y)dA=limn→∞Sn
方法二:非均匀分割求和 (概念性说明)
我们可以将区域 D 分割成大小不一的矩形,但这会使计算变得复杂。 假设我们用某种方式划分区域,得到 m m m 个矩形,第 k k k 个矩形的面积为 Δ A k \Delta A_k ΔAk,在该矩形内选择一个点 ( x k ∗ , y k ∗ ) (x_k^*, y_k^*) (xk∗,yk∗),则二重积分可以近似表示为:
∬ D ( x + y ) d A ≈ ∑ k = 1 m f ( x k ∗ , y k ∗ ) Δ A k = ∑ k = 1 m ( x k ∗ + y k ∗ ) Δ A k \iint_D (x+y) dA \approx \sum_{k=1}^m f(x_k^*, y_k^*) \Delta A_k = \sum_{k=1}^m (x_k^* + y_k^*) \Delta A_k ∬D(x+y)dA≈∑k=1mf(xk∗,yk∗)ΔAk=∑k=1m(xk∗+yk∗)ΔAk
当分割的矩形数量趋于无穷大,且每个矩形的最大直径趋于零时,这个近似值趋于二重积分的精确值。 这种方法的计算非常繁琐,因此通常不直接使用。
方法三:蒙特卡洛方法 (数值方法)
蒙特卡洛方法是一种数值方法,它通过随机采样来近似积分值。 我们可以在区域 D 内随机生成 N 个点 ( x i , y i ) (x_i, y_i) (xi,yi),然后计算:
∬ D ( x + y ) d A ≈ A ( D ) N ∑ i = 1 N f ( x i , y i ) = 1 N ∑ i = 1 N ( x i + y i ) \iint_D (x+y) dA \approx \frac{A(D)}{N} \sum_{i=1}^N f(x_i, y_i) = \frac{1}{N} \sum_{i=1}^N (x_i + y_i) ∬D(x+y)dA≈NA(D)i=1∑Nf(xi,yi)=N1i=1∑N(xi+yi)
其中 A ( D ) A(D) A(D) 是区域 D 的面积 (本例中为 1)。 这种方法的精度随着 N 的增加而提高,但它只是一种近似计算方法。
迭代积分计算 (实际计算方法)
上述求和方法只用于理解二重积分的概念。实际计算中,我们使用迭代积分:
∬ D ( x + y ) d A = ∫ 0 1 ∫ 0 1 ( x + y ) d y d x = ∫ 0 1 [ x y + 1 2 y 2 ] 0 1 d x = ∫ 0 1 ( x + 1 2 ) d x = [ 1 2 x 2 + 1 2 x ] 0 1 = 1 \iint_D (x+y) dA = \int_0^1 \int_0^1 (x+y) dy dx = \int_0^1 \left[ xy + \frac{1}{2}y^2 \right]_0^1 dx = \int_0^1 \left(x + \frac{1}{2}\right) dx = \left[ \frac{1}{2}x^2 + \frac{1}{2}x \right]_0^1 = 1 ∬D(x+y)dA=∫01∫01(x+y)dydx=∫01[xy+21y2]01dx=∫01(x+21)dx=[21x2+21x]01=1
在下面这些例子中,我们只展示求和的思路,不会进行复杂的求和运算,因为随着分割数n的增加,计算量会爆炸式增长。 极限运算通常需要用到一些求和公式来简化。
例题 1: 计算函数 f ( x , y ) = x 2 y f(x, y) = x^2y f(x,y)=x2y 在区域 D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ 2 } D = \{(x, y) | 0 \le x \le 1, 0 \le y \le 2\} D={(x,y)∣0≤x≤1,0≤y≤2} 上的二重积分。
-
分割: 将区域 D 分割成 n x m 个矩形,其中 Δx = 1/n, Δy = 2/m。 每个矩形的面积为 ΔA = 2/(nm)。
-
近似: 在每个矩形内选择一个点来近似函数值。 我们选择左下角的点,其坐标为 ( ( i − 1 ) / n , ( j − 1 ) 2 / m ) ((i-1)/n, (j-1)2/m) ((i−1)/n,(j−1)2/m),其中 1 ≤ i ≤ n 1 \le i \le n 1≤i≤n, 1 ≤ j ≤ m 1 \le j \le m 1≤j≤m。
-
求和: 二重积分可以近似为:
∬ D x 2 y d A ≈ ∑ i = 1 n ∑ j = 1 m ( i − 1 n ) 2 ( 2 ( j − 1 ) m ) 2 n m \iint_D x^2y dA \approx \sum_{i=1}^n \sum_{j=1}^m \left(\frac{i-1}{n}\right)^2 \left(\frac{2(j-1)}{m}\right) \frac{2}{nm} ∬Dx2ydA≈i=1∑nj=1∑m(ni−1)2(m2(j−1))nm2
-
极限: 二重积分的精确值是当 n 和 m 趋于无穷大时的极限:
∬ D x 2 y d A = lim n → ∞ , m → ∞ ∑ i = 1 n ∑ j = 1 m ( i − 1 n ) 2 ( 2 ( j − 1 ) m ) 2 n m \iint_D x^2y dA = \lim_{n \to \infty, m \to \infty} \sum_{i=1}^n \sum_{j=1}^m \left(\frac{i-1}{n}\right)^2 \left(\frac{2(j-1)}{m}\right) \frac{2}{nm} ∬Dx2ydA=n→∞,m→∞limi=1∑nj=1∑m(ni−1)2(m2(j−1))nm2
例题 2: 计算函数 f ( x , y ) = x y f(x, y) = xy f(x,y)=xy 在区域 D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , x ≤ y ≤ 1 } D = \{(x, y) | 0 \le x \le 1, x \le y \le 1\} D={(x,y)∣0≤x≤1,x≤y≤1} 上的二重积分。
-
分割: 这个区域不是矩形,分割起来相对复杂。 我们可以将区域分割成 n 个宽度为 1/n 的竖条,然后每个竖条再分成 m 个小矩形。 这个例子中,我们需要将每一竖条高度进行调整,因为 y 的上限是1,下限是 x。
-
近似: 在每个小矩形内,选择左下角的点进行近似。 计算变得较为复杂,因为每一竖条的小矩形高度不一致。
-
求和: 该求和表达式将非常复杂,需要考虑每个竖条上小矩形高度的变化。
-
极限: 同样,我们需要计算当 n 和 m 趋于无穷大时的极限。
例题 3: 计算函数 f ( x , y ) = 1 f(x, y) = 1 f(x,y)=1 在区域 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } D = \{(x, y) | x^2 + y^2 \le 1\} D={(x,y)∣x2+y2≤1} 上的二重积分 (单位圆)。
-
分割: 将单位圆分割成 n 个同心圆环,每个圆环再分成 m 个扇形。 这需要用到极坐标。 需要注意的是,每个扇形的面积并非完全相等。
-
近似: 在每个扇形内选择一个点,或者取扇形平均半径计算面积。
-
求和: 这需要用到极坐标下的面积计算,而且由于面积不是均匀的,求和会比较复杂。
-
极限: 计算 n 和 m 趋于无穷大时的极限。 这个例子中,使用极坐标进行迭代积分会更加简便。
让我们考虑一个定义在矩形区域 D = [ a , b ] × [ c , d ] D = [a, b] \times [c, d] D=[a,b]×[c,d] 上的函数 f ( x , y ) f(x, y) f(x,y)。
-
分割: 将区域 D 分割成 n x m 个小矩形。 我们使用均匀分割,则每个小矩形的宽度为 Δ x = b − a n \Delta x = \frac{b - a}{n} Δx=nb−a,高度为 Δ y = d − c m \Delta y = \frac{d - c}{m} Δy=md−c。 每个小矩形的面积为 Δ A = Δ x Δ y = ( b − a ) ( d − c ) n m \Delta A = \Delta x \Delta y = \frac{(b-a)(d-c)}{nm} ΔA=ΔxΔy=nm(b−a)(d−c).
-
采样点: 在每个小矩形内选择一个采样点。 我们用 ( x i j ∗ , y i j ∗ ) (x_{ij}^*, y_{ij}^*) (xij∗,yij∗) 表示第 i 行第 j 列小矩形的采样点。 一种常见的选择是取每个小矩形的左下角点: x i j ∗ = a + ( i − 1 ) Δ x , y i j ∗ = c + ( j − 1 ) Δ y x_{ij}^* = a + (i - 1)\Delta x, \quad y_{ij}^* = c + (j - 1)\Delta y xij∗=a+(i−1)Δx,yij∗=c+(j−1)Δy
其中 1 ≤ i ≤ n , 1 ≤ j ≤ m 1 \le i \le n, \quad 1 \le j \le m 1≤i≤n,1≤j≤m -
黎曼和: 函数 f(x,y) 在区域 D 上的黎曼和定义为:
S n m = ∑ i = 1 n ∑ j = 1 m f ( x i j ∗ , y i j ∗ ) Δ A = ∑ i = 1 n ∑ j = 1 m f ( a + ( i − 1 ) Δ x , c + ( j − 1 ) Δ y ) ( b − a ) ( d − c ) n m S_{nm} = \sum_{i=1}^n \sum_{j=1}^m f(x_{ij}^*, y_{ij}^*) \Delta A = \sum_{i=1}^n \sum_{j=1}^m f\left(a + (i - 1)\Delta x, c + (j - 1)\Delta y\right) \frac{(b-a)(d-c)}{nm} Snm=∑i=1n∑j=1mf(xij∗,yij∗)ΔA=∑i=1n∑j=1mf(a+(i−1)Δx,c+(j−1)Δy)nm(b−a)(d−c)
-
二重积分: 如果当 n → ∞ n \to \infty n→∞ 和 m → ∞ m \to \infty m→∞ 时,黎曼和 S n m S_{nm} Snm 收敛到一个极限值,则该极限值定义为函数 f(x, y) 在区域 D 上的二重积分:
∬ D f ( x , y ) d A = lim n → ∞ , m → ∞ S n m = lim n → ∞ , m → ∞ ∑ i = 1 n ∑ j = 1 m f ( a + ( i − 1 ) Δ x , c + ( j − 1 ) Δ y ) ( b − a ) ( d − c ) n m \iint_D f(x, y) dA = \lim_{n \to \infty, m \to \infty} S_{nm} = \lim_{n \to \infty, m \to \infty} \sum_{i=1}^n \sum_{j=1}^m f\left(a + (i - 1)\Delta x, c + (j - 1)\Delta y\right) \frac{(b-a)(d-c)}{nm} ∬Df(x,y)dA=n→∞,m→∞limSnm=n→∞,m→∞limi=1∑nj=1∑mf(a+(i−1)Δx,c+(j−1)Δy)nm(b−a)(d−c)
这个公式清晰地展现了如何从 i 和 j 的双重求和 (黎曼和) 转化到二重积分。 需要注意的是,这个极限的存在性需要满足一定的条件(例如,f(x,y) 在 D 上连续或可积)。 不同的采样点选择会得到不同的黎曼和,但如果极限存在,它们都会收敛到相同的二重积分值。
以下展示如何用二重黎曼和逼近二重积分,并体会从离散求和到连续积分的过渡:
例题1:单位正方形上的函数
考虑函数 f ( x , y ) = x 2 y f(x, y) = x^2y f(x,y)=x2y 在单位正方形 D = [ 0 , 1 ] × [ 0 , 1 ] D = [0, 1] \times [0, 1] D=[0,1]×[0,1] 上的二重积分。 使用左下角作为采样点,写出相应的黎曼和,并说明其与二重积分的关系。
解:
-
分割: 将单位正方形分成 n x n 个大小相等的小正方形,每个小正方形的边长为 Δ x = Δ y = 1 n \Delta x = \Delta y = \frac{1}{n} Δx=Δy=n1, 面积为 Δ A = 1 n 2 \Delta A = \frac{1}{n^2} ΔA=n21.
-
采样点: 左下角的采样点坐标为 ( x i j , y i j ) = ( i − 1 n , j − 1 n ) (x_{ij}, y_{ij}) = \left(\frac{i-1}{n}, \frac{j-1}{n}\right) (xij,yij)=(ni−1,nj−1), 其中 1 ≤ i , j ≤ n 1 \le i, j \le n 1≤i,j≤n.
-
黎曼和: 黎曼和为:
S n = ∑ i = 1 n ∑ j = 1 n f ( i − 1 n , j − 1 n ) Δ A = ∑ i = 1 n ∑ j = 1 n ( i − 1 n ) 2 ( j − 1 n ) 1 n 2 S_n = \sum_{i=1}^n \sum_{j=1}^n f\left(\frac{i-1}{n}, \frac{j-1}{n}\right) \Delta A = \sum_{i=1}^n \sum_{j=1}^n \left(\frac{i-1}{n}\right)^2 \left(\frac{j-1}{n}\right) \frac{1}{n^2} Sn=∑i=1n∑j=1nf(ni−1,nj−1)ΔA=∑i=1n∑j=1n(ni−1)2(nj−1)n21
-
二重积分: 当 n → ∞ n \to \infty n→∞, S n S_n Sn 收敛于二重积分:
∬ D x 2 y d A = ∫ 0 1 ∫ 0 1 x 2 y d x d y \iint_D x^2y \, dA = \int_0^1 \int_0^1 x^2y \, dx \, dy ∬Dx2ydA=∫01∫01x2ydxdy
例题2:三角形区域上的函数
考虑函数 f ( x , y ) = x + 2 y f(x, y) = x + 2y f(x,y)=x+2y 在三角形区域 D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ x } D = \{(x, y) | 0 \le x \le 1, 0 \le y \le x\} D={(x,y)∣0≤x≤1,0≤y≤x} 上的二重积分。 使用左下角作为采样点,写出相应的黎曼和(可以考虑不均匀分割,使得小矩形的面积不完全相等)。
解: (由于三角形区域,采用均匀分割会比较复杂)
一个简化的办法是,仍然使用 n × n n \times n n×n 的分割,但是只考虑落在三角形区域内的那些小矩形。 小矩形面积仍然为 Δ A = 1 n 2 \Delta A = \frac{1}{n^2} ΔA=n21. 黎曼和则变为:
S n = ∑ i = 1 n ∑ j = 1 i f ( i − 1 n , j − 1 n ) 1 n 2 = ∑ i = 1 n ∑ j = 1 i ( i − 1 n + 2 j − 1 n ) 1 n 2 S_n = \sum_{i=1}^n \sum_{j=1}^i f\left(\frac{i-1}{n}, \frac{j-1}{n}\right) \frac{1}{n^2} = \sum_{i=1}^n \sum_{j=1}^i \left(\frac{i-1}{n} + 2\frac{j-1}{n}\right) \frac{1}{n^2} Sn=∑i=1n∑j=1if(ni−1,nj−1)n21=∑i=1n∑j=1i(ni−1+2nj−1)n21
当 n → ∞ n \to \infty n→∞,此黎曼和趋近于
∬ D ( x + 2 y ) d A = ∫ 0 1 ∫ 0 x ( x + 2 y ) d y d x \iint_D (x+2y) \, dA = \int_0^1 \int_0^x (x+2y) \, dy \, dx ∬D(x+2y)dA=∫01∫0x(x+2y)dydx
例题3:圆形区域上的函数
考虑函数 f ( x , y ) = x 2 + y 2 f(x,y) = x^2 + y^2 f(x,y)=x2+y2 在半径为 1 的圆盘 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } D = \{(x,y) | x^2 + y^2 \le 1\} D={(x,y)∣x2+y2≤1} 上的二重积分。 这个例子需要用到极坐标,直接用矩形分割比较复杂,所以这里只给出积分的表达,不展开黎曼和的详细推导:
∬ D ( x 2 + y 2 ) d A \iint_D (x^2 + y^2) \, dA ∬D(x2+y2)dA 可以使用极坐标转换方便计算: x = r cos θ , y = r sin θ , d A = r d r d θ x = r\cos\theta, y = r\sin\theta, dA = r dr d\theta x=rcosθ,y=rsinθ,dA=rdrdθ
以下是一些难度较高的例子,涉及更复杂的区域和函数,需要更巧妙地设计黎曼和来逼近二重积分:
例题1:非矩形区域,非均匀分割
考虑函数 f ( x , y ) = e x 2 + y 2 f(x, y) = e^{x^2 + y^2} f(x,y)=ex2+y2 在区域 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 , x ≥ 0 , y ≥ 0 } D = \{(x, y) | x^2 + y^2 \le 1, x \ge 0, y \ge 0\} D={(x,y)∣x2+y2≤1,x≥0,y≥0} (单位圆的右上角四分之一) 上的二重积分。 设计一个黎曼和来逼近这个积分。由于区域是圆形,均匀矩形分割不理想,考虑极坐标转换:
解: 使用极坐标转换, x = r cos θ , y = r sin θ x = r\cos\theta, y = r\sin\theta x=rcosθ,y=rsinθ, 区域变为 0 ≤ r ≤ 1 , 0 ≤ θ ≤ π 2 0 \le r \le 1, 0 \le \theta \le \frac{\pi}{2} 0≤r≤1,0≤θ≤2π. 我们可以将区域分割成 n 个扇形,每个扇形的角度为 Δ θ = π 2 n \Delta \theta = \frac{\pi}{2n} Δθ=2nπ, 再将每个扇形沿径向分割成 m 个同心圆环,每个圆环的宽度为 Δ r = 1 m \Delta r = \frac{1}{m} Δr=m1. 则每个小区域的面积近似为 $ \Delta A_{ij} = \frac{1}{2} r_i \Delta r \Delta \theta$, 其中 r i = i m r_i = \frac{i}{m} ri=mi, 1 ≤ i ≤ m 1 \le i \le m 1≤i≤m, 1 ≤ j ≤ n 1 \le j \le n 1≤j≤n.
黎曼和为:
S m n = ∑ j = 1 n ∑ i = 1 m e r i 2 1 2 r i Δ r Δ θ = ∑ j = 1 n ∑ i = 1 m e ( i m ) 2 1 2 i m 1 m π 2 n S_{mn} = \sum_{j=1}^n \sum_{i=1}^m e^{r_i^2} \frac{1}{2} r_i \Delta r \Delta \theta = \sum_{j=1}^n \sum_{i=1}^m e^{\left(\frac{i}{m}\right)^2} \frac{1}{2} \frac{i}{m} \frac{1}{m} \frac{\pi}{2n} Smn=∑j=1n∑i=1meri221riΔrΔθ=∑j=1n∑i=1me(mi)221mim12nπ
当 m , n → ∞ m, n \to \infty m,n→∞, S m n S_{mn} Smn收敛于:
∫ 0 π / 2 ∫ 0 1 e r 2 r d r d θ \int_0^{\pi/2} \int_0^1 e^{r^2} r \, dr \, d\theta ∫0π/2∫01er2rdrdθ
例题2:分段函数
考虑函数
f ( x , y ) = { 1 if x 2 + y 2 ≤ 1 0 otherwise f(x, y) = \begin{cases} 1 & \text{if } x^2 + y^2 \le 1 \\ 0 & \text{otherwise} \end{cases} f(x,y)={10if x2+y2≤1otherwise
在区域 D = [ − 2 , 2 ] × [ − 2 , 2 ] D = [-2, 2] \times [-2, 2] D=[−2,2]×[−2,2] 上的二重积分。 设计一个黎曼和来逼近这个积分。
解: 这个函数表示单位圆内的值为 1,其余为 0。 可以用均匀矩形分割。设每个小矩形的边长为 Δ x = Δ y = 4 n \Delta x = \Delta y = \frac{4}{n} Δx=Δy=n4. 黎曼和为:
S n = ∑ i = 1 n ∑ j = 1 n f ( x i , y j ) ( 4 n ) 2 S_n = \sum_{i=1}^n \sum_{j=1}^n f(x_i, y_j) \left(\frac{4}{n}\right)^2 Sn=∑i=1n∑j=1nf(xi,yj)(n4)2
其中 ( x i , y j ) (x_i, y_j) (xi,yj) 是每个小矩形的中心点。 当 n 趋于无穷大时,黎曼和收敛于单位圆的面积 π \pi π. 这里体现了黎曼和可以计算区域的面积。
例题3:条件限制的区域
考虑函数 f ( x , y ) = x y f(x, y) = xy f(x,y)=xy 在区域 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 , x ≥ y } D = \{(x, y) | x^2 + y^2 \le 1, x \ge y\} D={(x,y)∣x2+y2≤1,x≥y} 上的二重积分。 设计一个黎曼和来逼近该积分。 这个区域是单位圆的一半,由直线 y=x 分割。 可以利用极坐标或根据区域形状设计非均匀分割。
这些例题的难度在于:
- 复杂的区域: 需要巧妙地分割区域,以便更好地逼近积分。
- 非均匀分割: 均匀分割可能效率低下,需要考虑非均匀分割。
- 复杂的函数: 函数本身可能难以直接计算,需要使用近似方法。
以下是几道关于黎曼和逼近二重积分的例题,难度递增:
例题1:三角形区域上的简单函数
计算函数 f ( x , y ) = x + y f(x, y) = x + y f(x,y)=x+y 在三角形区域 D = { ( x , y ) ∣ 0 ≤ x ≤ 1 , 0 ≤ y ≤ x } D = \{(x, y) | 0 \le x \le 1, 0 \le y \le x\} D={(x,y)∣0≤x≤1,0≤y≤x} 上的二重积分。 使用黎曼和进行近似计算。
解题思路: 可以将三角形区域划分成若干个小矩形。由于区域形状不规则,需要仔细处理边界上的小矩形。 可以采用均匀分割,也可以根据需要进行非均匀分割以提高精度。 黎曼和的表达式将会是:
S m n = ∑ i = 1 m ∑ j = 1 n f ( x i j , y i j ) Δ x Δ y S_{mn} = \sum_{i=1}^m \sum_{j=1}^n f(x_{ij}, y_{ij}) \Delta x \Delta y Smn=∑i=1m∑j=1nf(xij,yij)ΔxΔy
其中, x i j x_{ij} xij 和 y i j y_{ij} yij 是第 i i i 行第 j j j 个小矩形的坐标, Δ x \Delta x Δx 和 Δ y \Delta y Δy 是小矩形的边长。 随着 m m m 和 n n n 趋于无穷大,黎曼和将收敛到二重积分的值。
例题2:圆形区域上的复杂函数
计算函数 f ( x , y ) = e − ( x 2 + y 2 ) f(x, y) = e^{-(x^2 + y^2)} f(x,y)=e−(x2+y2) 在单位圆盘 D = { ( x , y ) ∣ x 2 + y 2 ≤ 1 } D = \{(x, y) | x^2 + y^2 \le 1\} D={(x,y)∣x2+y2≤1}上的二重积分。 使用极坐标和黎曼和进行近似计算。
解题思路: 由于区域是圆形,使用极坐标转换会简化计算。 将圆盘划分成若干个极坐标下的扇形小区域。 黎曼和的表达式将会是:
S m n = ∑ i = 1 m ∑ j = 1 n f ( r i cos θ j , r i sin θ j ) r i Δ r Δ θ S_{mn} = \sum_{i=1}^m \sum_{j=1}^n f(r_i \cos \theta_j, r_i \sin \theta_j) r_i \Delta r \Delta \theta Smn=∑i=1m∑j=1nf(ricosθj,risinθj)riΔrΔθ
其中, r i r_i ri$ 和 $ θ j \theta_j θj 分别表示极径和极角的划分点, Δ r \Delta r Δr 和 Δ θ \Delta \theta Δθ 分别表示极径和极角的步长。 这个例子中,函数具有对称性,可以利用对称性简化计算。
例题3:分段函数和不规则区域
计算函数 f ( x , y ) = { 1 if x 2 + y 2 ≤ 1 and x ≥ 0 0 otherwise f(x, y) = \begin{cases} 1 & \text{if } x^2 + y^2 \le 1 \text{ and } x \ge 0 \\ 0 & \text{otherwise} \end{cases} f(x,y)={10if x2+y2≤1 and x≥0otherwise 在区域 D = { ( x , y ) ∣ − 2 ≤ x ≤ 2 , − 2 ≤ y ≤ 2 } D = \{(x, y) | -2 \le x \le 2, -2 \le y \le 2\} D={(x,y)∣−2≤x≤2,−2≤y≤2} 上的二重积分。 使用黎曼和进行近似计算。
解题思路: 这是一个分段函数,并且区域包含单位圆的一半。 需要根据函数的定义和区域的形状进行合适的划分。 可以将区域划分成矩形,然后根据每个小矩形是否落在函数值为 1 的区域内来计算黎曼和。 由于函数是不连续的,需要特别注意处理边界的情况。 此题需要灵活运用黎曼和的定义,并结合分段函数和区域的几何特性来进行计算。
这些例题的难度逐渐增加,涵盖了不同类型的函数和区域,旨在帮助更好地理解黎曼和在逼近二重积分中的应用。 记住,实际计算中,数值积分方法通常比直接计算黎曼和更有效率,但理解黎曼和的原理对于掌握二重积分的概念至关重要。