Task02 P3-P4:回归

本文探讨了回归模型的基本概念,从线性模型的建立到损失函数的选择,再到梯度下降法的运用。重点介绍了过拟合问题的出现及正则化的解决方案,通过实例说明如何通过加入正则化避免模型复杂度过高。最后,讲解了模型验证的方法和复杂模型下的一元N次方程模型。
摘要由CSDN通过智能技术生成

一、回归的定义
有特征输入input ,通过function,得到一个输出数值。

  如:自动驾驶:输入各个特征:车上sensor的数据、车况、车距等
  输出方向盘的角度

二、创建模型
模型步骤:
step1:模型假设,选择模型框架(线性模型)
step2:模型评估,如何判断众多模型的好坏(损失函数)
step3:模型优化,如何筛选最优的模型(梯度下降)
在坐标轴上:

    如图:红色区域代表loss 较大,蓝色区域代表loss较小。

    -----步骤优化:如果需要考虑更多的因素,那么就需要加入更多的特征,则损耗函数也响应的加入多特征的损耗,在这种情况下,虽然数据量没有变的更加复杂,但是更多的input也会导致系统出现过拟合。

  3.最佳模型----梯度下降 

    筛选最优模型

如图,定义了损耗函数,之后我们通过梯度的运算,计算和对于函数的偏导,如下

根据梯度下降,调整步长,知道找到损耗函数的最低点:

    图中的圈圈代表等等高线,蓝色越深,损耗函数越小 ,我们不断调整步长,就是一个不断向内圈靠近的过程,偏导函数的坐标就是等高线的法线方向。

  4.梯度下降算法的局限

    梯度下降算法目前面临的挑战是:

     1>.仅为当前最优

     2>.梯度等于0时

     3>.梯度趋近于0



     在更为复杂的模型里,梯度下降算法会遇见问题2和3。之后我们应该如何优化模型,避免这样的问题呢?

-----步骤优化:加入正则化          

    w越小,表示function越平滑,误差相应就会越小

    b对曲线的平滑度使没有影响的。

    我们要想避免过拟合的问题,就要使曲线尽可能的光滑,即使高次项多曲线的影响尽可能的小,所以,我们将高次项加权放入loss function 中,这样训练出来的model既满足预测值和真实值之间误差小,又能使曲线形状比较平滑稳定。

三、如何验证模型的好坏
使用训练集和测试集来验证模型的好坏:

     假设我们用10组原始数据,训练集求得平均误差

     再给出10组数据,在测试集中验证function,再求得

     对比我们得到的两组误差值。

四、一元N次模线性模型
即假设我们选的方程为一元二次方程时:
实则也可看做线性模型。
随着方程越来越复杂,次项越来越高,会出现过拟合现象。过拟合现象实际上也就是function的space过大,虽然包含真实的函数,但是因为距离大出现的现象,这就要求我们在选择合适的函数模型。过拟合与欠拟合都是不合适的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值