傅里叶变化互易对称性

互易对称性

若有 f ( t ) ↔ F ( j w ) f(t) ↔ F(jw) f(t)F(jw) , 则有 F ( t ) ↔ 2 π f ( − w ) F(t) ↔ 2πf(-w) F(t)2πf(w)

若有 f ( t ) f(t) f(t) 是偶函数 , 则有 F ( t ) ↔ 2 π f ( w ) F(t) ↔ 2πf(w) F(t)2πf(w)


例子1: 求出H(w)=δ(w) 的傅里叶逆变化

解: 已知 δ ( t ) ↔ 1 δ(t) ↔ 1 δ(t)1
则有: 1 ↔ 2 π δ ( w ) 1 ↔ 2πδ(w) 12πδ(w)
      1 2 π ↔ δ ( w ) \frac{1}{2π} ↔ δ(w) 2π1δ(w)


例子2: 求出H(w)为门函数的傅里叶逆变化

在这里插入图片描述

解: 已知门函数的傅里叶变化为Sa(w)函数:
在这里插入图片描述
因为: g ( t ) ↔ τ S a ( w τ 2 ) g(t) ↔ τSa(w\frac{τ}{2}) g(t)τSa(w2τ)

所以: τ S a ( t τ 2 ) ↔ 2 π G ( w ) τSa(t\frac{τ}{2})↔2πG(w) τSa(t2τ)2πG(w)

            τ 2 π S a ( t τ 2 ) ↔ G ( w ) \frac{τ}{2π}Sa(t\frac{τ}{2})↔G(w) 2πτSa(t2τ)G(w)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值