(13)TEBD基态计算+DMRG算法

1.TEBD算法计算一维格点模型基态

1.1背景

考虑N个自旋构成的一维海森堡模型(回顾:3.5节)
H ^ = ∑ ⟨ i , j ⟩ H ^ i j , H ^ i j = ∑ α = x , y , z s ^ i α s ^ j α \widehat{H}=\sum_{\langle i, j\rangle} \widehat{H}_{i j}, \hat{H}_{i j}=\sum_{\alpha=x, y, z} \hat{s}_{i}^{\alpha} \hat{s}_{j}^{\alpha} H =i,jH ij,H^ij=α=x,y,zs^iαs^jα
基态计算的核心问题:计算给定哈密顿量的本征值最小的那个本征态

1.2主要思路

主要思路:利用基于Trotter-Suzuki分解退火算法,随机初始化的MPS态演化到基态,将该演化过程转换为张量网络收缩问题,并使用TEBD算法求解该收缩

1.3具体步骤

Step. 1 − 1- 1 获得演化算符 e − τ H ^ i j e^{-\tau \widehat{H}_{i j}} eτH ij 的系数张量 ( ( ( τ \tau τ 小的正实数 ) ) ) :
G s ′ 1 s 2 s 1 s 2 = ⟨ s 1 ′ s 2 ′ ∣ e − τ H ^ i j ∣ s 1 s 2 ⟩ G_{s^{\prime} 1} s_{2} s_{1} s_{2}=\left\langle s_{1}^{\prime} s_{2}^{\prime}\left|e^{-\tau \hat{H}_{i j}}\right| s_{1} s_{2}\right\rangle Gs1s2s1s2=s1s2eτH^ijs1s2
在这里插入图片描述

该步之后,基态演化算符
P ^ = lim ⁡ K → i n f ( e − τ ∑ ⟨ i , j ⟩ H ^ i j ) K \widehat{\boldsymbol{P}}=\lim _{K \rightarrow \mathrm{inf}}\left(e^{-\tau \sum_{\langle i, j\rangle} \hat{H}_{i j}}\right)^{K} P =Kinflim(eτi,jH^ij)K注: K K K代表着张量网络的层数(一层有两个子层)
基态演化算符将被表示成为由四阶张量G构成的张量网络(如下图所示)
如图为当 K = 3 K = 3 K=3时的张量网络:
在这里插入图片描述

注:基态演化算符到张量网络的变化需要参考(4)(5)的知识
Step. 2 – 随机初始化MPS态,放置于张量网络底部(MPS态代表的初始的量子态)
在这里插入图片描述
:为什么我们边界上可以随机初始化MPS态?
因为基态演化算子 P ^ \widehat{\boldsymbol{P}} P 可以证明它可以把任意的随机的量子态给投影到基态上去(MPS态与基态不完全正交,即使完全正交也会有一些数值的误差,这些误差反而帮助我们避免了正交性)
:最好保证MPS态的归一性 因为MPS态代表的就是初始的量子态(量子态是归一的)
Step. 3 - 将靠近MPS的半层张量与MPS中相关的张量进行收缩,部分近邻的两个张量被收缩成为一个四阶张量
在这里插入图片描述

Step. 4 – 利用规范变化,将MPS变换为中心正交形式,正交中心为第一个四阶张量;
:为什么在第四步中进行中心正交形式? 解:保证在第五步中裁剪误差极小的,近似是最优的。
Step. 5 – 对中心张量进行奇异值分解,如果奇异谱的维数大于预设的截断维数 χ \chi χ,则仅保 χ \chi χ个最大的奇异值与相应的奇异向量;
Step. 6 - 移动正则中心到下一个四阶张量,重复步骤4-5,直到所有四阶张量被分解为三阶张量
:分解得到的MPS态有两个特征:
1.与演化以前一样每个tensor只含有一个物理指标
2.辅助指标的维数不超过 χ \chi χ
Step. 7 -进行完上述步骤后,MPS被变换称为演化前的形式(由三阶张量构成),重复步骤3-6,收缩下一个半层张量。重复收缩直到MPS收敛
总的流程图:
在这里插入图片描述
:如何判断MPS收敛?
1.可以看全部的tensor是否收敛
2.也可以看分解过程中得到的奇异谱是否收敛
:收敛的意义
在投影过程中,随着 K → i n f K \rightarrow \mathrm{inf} Kinf,量子态被投影到一个不动点(即哈密顿量的基态)

1.4拓展

① TEBD算法的具体实施方案并不唯一,例如,可以每次只演化一次局域门,如图:
在这里插入图片描述
②我们也可以将本节给出的张量网络, 转换成博客(12)中张量网络的形式,如下图,转后的形式被称为 e − τ ∑ ⟨ i , j ⟩ H ^ i j e^{-\tau \sum_{\langle i, j\rangle} \widehat{H}_{i j}} eτi,jH ij 的MPO表式
在这里插入图片描述

2.密度矩阵重整化群(DMRG)

是纯物理算法,来解决哈密顿量的基态问题

2.1背景

TEBD算法计算基态的思路是退火,密度矩阵重整化群(DMRG)采取的是另一种思路是:基于最大本征态求解对应的最优化问题,即求解如下极小化问题:
E g = min ⁡ ⟨ φ ∣ φ ⟩ = 1 ⟨ φ ∣ H ^ ∣ φ ⟩ E_{g}=\min _{\langle\varphi \mid \varphi\rangle=1}\langle\varphi|\widehat{H}| \varphi\rangle Eg=φφ=1minφH φ当哈密顿量为 H ^ = ∑ ⟨ i , j ⟩ H ^ i j , \widehat{H}=\sum_{\langle i, j\rangle} \widehat{H}_{i j}, H =i,jH ij, 有:
E g = min ⁡ ⟨ φ ∣ φ ⟩ = 1 ∑ ⟨ i , j ⟩ ⟨ φ ∣ H ^ i j ∣ φ ⟩ E_{g}=\min _{\langle\varphi \mid \varphi\rangle=1} \sum_{\langle i, j\rangle}\left\langle\varphi\left|\widehat{H}_{i j}\right| \varphi\right\rangle Eg=φφ=1mini,jφH ijφ ⟨ φ ∣ φ ⟩ = 1 \langle\varphi \mid \varphi\rangle=1 φφ=1表示基态波函数归一
:变分参数为MPS态中的各个张量,我们通过对各个小张量做变分,来极小化基态能。

每一项对应的张量网络图形表示如下(下图以 ⟨ φ ∣ H ^ 23 ∣ φ ⟩ \left\langle\varphi\left|\widehat{H}_{2 3}\right| \varphi\right\rangle φH 23φ为例)
在这里插入图片描述 DMRG的策略是更新各个张量,使能量达到极小,具体的更新策略不唯一。
核心思想:设基态具备MPS形态的时候,去优化MPS态中的各个张量来解能量极小化的问题

2.2单点(one-site)DMRG

在单点(one-site)DMRG中,每次更新MPS中的一个张量,其余张量看成是给定的参数(alternating least square, ALS)。
注:需要一遍一遍不断的更新张量,直到MPS态收敛
下面,我们将单个张量的优化问题等价为局域矩阵最大本征问题。(MPS态的核心思想)
更新第2个张量为例,定义有效哈密顿量 h ^ 2 \hat h_2 h^2为如下项的求和
在这里插入图片描述

易得,每一项收缩之后的结果为六阶张量, h ^ 2 \hat h_2 h^2为多个六阶张量的求和,故也为六阶张量
有: E = ⟨ A ( 2 ) ∣ h ^ 2 ∣ A ( 2 ) ⟩ E=\left\langle\boldsymbol{A}^{(2)}\left|\widehat{\boldsymbol{h}}_{2}\right| \boldsymbol{A}^{(2)}\right\rangle E=A(2)h 2A(2)
图形表示为:
在这里插入图片描述
注:两个三阶张量和一个六阶张量的求和
注:张量网络的收缩计算和求和顺序无关

最优化问题变成了:
min ⁡ ⟨ φ ∣ φ ⟩ = 1 ⟨ A ( 2 ) ∣ h ^ 2 ∣ A ( 2 ) ⟩ \min_{\langle\varphi \mid \varphi\rangle=1}{\left\langle\boldsymbol{A}^{(2)}\left|\widehat{\boldsymbol{h}}_{2}\right| \boldsymbol{A}^{(2)}\right\rangle} φφ=1minA(2)h 2A(2)
此时, 可通过规范变换,将MPS态的正交中心移动至 A ( 2 ) A^{(2)} A(2) , 有:
⟨ φ ∣ φ ⟩ = 1 ⇔ ∣ A ( 2 ) ∣ = 1 \langle\varphi \mid \varphi\rangle=1 \Leftrightarrow\left|A^{(2)}\right|=1 φφ=1A(2)=1最优化问题最终变成了:
min ⁡ ∣ A ( 2 ) ∣ = 1 ⟨ A ( 2 ) ∣ h ^ 2 ∣ A ( 2 ) ⟩ \min _{\left|A^{(2)}\right|=1}\left\langle A^{(2)}\left|\hat{h}_{2}\right| A^{(2)}\right\rangle A(2)=1minA(2)h^2A(2)
注:这个变分只需要直接去对 h ^ 2 \hat{h}_{2} h^2做本征值分解,求最小的本征态。
在这里插入图片描述

根据(最大本征问题的优化问题)的内容可知: A ( 2 ) A^{(2)} A(2) h ^ 2 \widehat{h}_{2} h 2 最小本征态! 因此, A ( 2 ) A^{(2)} A(2) 应被更新为 h ^ 2 \hat{h}_{2} h^2 的最低本征态。
求解 h ^ 2 \hat{h}_{2} h^2 本征态的计算复杂度可控:即求解维数为 d χ 2 × d χ 2 d \chi^{2} \times d \chi^{2} dχ2×dχ2 的厄密矩阵的本征态。

2.3中心正交形式简化对算符观测量的计算

得到基态MPS后,我们可利用中心正交形式简化对算符观测量的计算
(注:在部分文献里,如果对右矢的MPS或TN态取转置共轭到左矢,箭头的方向也要相应地方向。但在这里我们把转置共轭后的MPS也当作纯粹的TN看待,故不对箭头进行反向;省略物理指标上的箭头)
①当正交中心与观测量所在格点重合时,计算二体算符的平均值时可做例如下图的简化:
在这里插入图片描述
注:因为MPS态是满足中心正则的,根据中心正交性每上下对可以得到一个单位矩阵
②当正交中心不与观测量所在格点重合时,在不移动正交中心的情况下,计算可做例如下图的简化:
在这里插入图片描述

2.4总结

综上, 在DMRG算法中,对第n个张量 A ( n ) A^{(n)} A(n) 的更新步骤如下:
a) 将MPS正交中心移动到第n个张量;
b) 计算第n个张量对应的有效哈密顿量 h ^ n \hat{h}_{n} h^n;
c) 将 A ( n ) A^{(n)} A(n) 更新为 h ^ n \hat{h}_{n} h^n 的最低本征态。
整个DMRG算法的步骤如下:
1. 1 . 1. 随机初始化MPS态中的各个张量 { A ( n ) } ; \left\{A^{(n)}\right\} ; {A(n)};
2. 按步骤a)-c) 依次更新第1到第N个张量,再依次更新第N到第1个张量;
3. 如果MPS收效,计算完成; 否则返回第2步。 (注:步骤2被称为一个sweep)
总结:DMRG算法的关键在于将整个MPS的优化问题化成多个有效哈密顿量的最小本征问题,循环优化直至MPS收敛

2.5重整化群的概念

①在理论物理中,“重整化”( renormalization )可被理解为,通过对系统进行某种(空间或能量等)上的尺度/标度变换,研究相应物理性质的变化。
:重整化:把不太重要的态或者基底扔掉,只保留重要的态
②“”(group)取自于群论,代指标度变换的方式。重整化群并不一定真正构成一个群,但是往往意味着某种变换不变性,并自洽的方式去掉物理系统的细节信息,提取本质属性。
③从低秩近似的角度,密度矩阵重整化群中的“重整化” ,可以理解成对量子希尔伯特空间的最优低秩压缩
在这里插入图片描述
具体而言,正交条件对应的方向,可以看成是重整化流(RG flow)的方向,每个辅助指标,可以看作是沿重整化流反方向经过的所有物理指标的低秩近似,即在相应希尔伯特空间中提取重要的基矢,去掉不重要的基矢
④在DMRG中,基矢的重要程度是由能量决定的,这也符合热力学的原理

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值