(15)纠缠熵面积律、MPO简述

1.纠缠熵面积律

由MPS的正交形式:
在这里插入图片描述
容易看出,其奇异谱 Λ \Lambda Λ 的维数等于辅助指标的维数; 同时,由于MPS的归一化条件, 有| Λ ∣ = 1 \Lambda \mid=1 Λ=1
易证, 设奇异谱维数dim ( Λ ) = χ , (\Lambda)=\chi, (Λ)=χ, Λ = [ 1 χ , 1 χ , … , 1 χ ] \Lambda=\left[\frac{1}{\sqrt{\chi}}, \frac{1}{\sqrt{\chi}}, \ldots, \frac{1}{\sqrt{\chi}}\right] Λ=[χ 1,χ 1,,χ 1] 时:
纠缠熵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值