1.纠缠熵面积律
由MPS的正交形式:
容易看出,其奇异谱 Λ \Lambda Λ 的维数等于辅助指标的维数; 同时,由于MPS的归一化条件, 有| Λ ∣ = 1 \Lambda \mid=1 Λ∣=1 。
易证, 设奇异谱维数dim ( Λ ) = χ , (\Lambda)=\chi, (Λ)=χ, 当 Λ = [ 1 χ , 1 χ , … , 1 χ ] \Lambda=\left[\frac{1}{\sqrt{\chi}}, \frac{1}{\sqrt{\chi}}, \ldots, \frac{1}{\sqrt{\chi}}\right] Λ=[χ1,χ1,…,χ1] 时:
纠缠熵