2024 年您应该使用的 8 个顶级 Python 库

前言

Python仍然是开发人员趋之若鹜的最流行的编程语言之一。它不仅对于新用户来说是一种易于理解的语言,而且其允许在多个领域进行多样化的编程。在这篇博客中,我们将了解 2023 年的一些顶级 Python 库,看看到底是什么让它们发挥作用。有些是家喻户晓的名字,有些则在其社区内广为人知。

2023 年和 2024 年顶级 Python 库

NumPy

NumPy是 Python 科学计算的黄金标准,并且始终被认为是顶级 Python 库之一。它是一个用于数组操作的库,每月被下载数百次,在 GitHub 上拥有超过 25,000 颗星。它受欢迎的原因在于它被广泛应用于各个领域,包括数据科学、机器学习和计算物理。

NumPy 数组与 Python 中的列表类似,但它们针对性能进行了优化。NumPy 数组存储在连续的内存中,这使得它们的访问速度比列表快得多。NumPy 还提供了许多可用于对数组进行操作的数学函数,例如加法、减法、乘法和除法。

Scikit-learn

Scikit-learn是一个机器学习巨头,提供了大量算法和工具,使其成为许多数据科学家的首选库。它易于使用,具有文档齐全的 API 和大量可用的教程和示例。Scikit-learn 也是开源的,这使其成为学术和商业用途的流行选择。

Scikit-learn 中一些最流行的算法包括:

  • 线性回归
  • 逻辑回归
  • 支持向量机 (SVM)
  • 决策树
  • 随机森林
  • k-最近邻 (kNN)

TensorFlow

TensorFlow 最初由 Google Brain 的研究人员开发,在深度学习领域处于领先地位, TensorFlow的受欢迎程度源于其强大的功能和广泛的社区支持。随着人工智能在各个行业的爆炸式增长,TensorFlow 也越来越受欢迎,因为它拥有强大的工具、库和社区生态系统,不断推动机器学习的进步。

Pandas

当然,如果没有pandas,顶级 Python 库的列表就不完整。如果没有这个库,如果没有 pandas,数据分析就不会一样,因为 pandas 以其强大的数据结构和操作工具占据主导地位。

Pandas 提供了一种快速有效的方式来处理表格数据。它广泛应用于数据科学、金融和其他需要数据分析的领域。它包括几种专门为数据分析设计的数据结构和工具,例如:

  • Series:一维数据数组。
  • DataFrame:二维数据数组,具有行和列。
  • 索引:DataFrame 中每一行或每一列的唯一标识符。
  • MultiIndex:DataFrame 的分层索引。
  • GroupBy:根据共同值对数据进行分组的工具。
  • 数据操作:用于清理、转换和聚合数据的各种工具。

Django

Django是一个成熟且流行的 Python Web 框架,以其易用性和构建复杂 Web 应用程序的能力而闻名。它拥有完善的生态系统,拥有大量第三方库和工具。真正让 Django 与众不同的是以下几件事。首先,它易于使用,代码易于学习,并且有一个记录良好的 API。它也是一个强大的框架。它允许在生态系统内创建 Web 应用程序,甚至提供模板、路由和安全功能。

这个库的秘密武器之一是它的可扩展性。众所周知,拥有处理高流量的能力非常重要,并且 Django 允许 Web 应用程序轻松扩展。目前,Django 在 GitHub 上的星数仍超过 74,000 颗。

PyTorch

这个重要的库是一个开源机器学习框架,能够加速研究原型设计,使公司能够进入生产部署阶段。

PyTorch 的主要功能包括强大的云支持、丰富的工具生态系统、分布式训练和本机 ONNX(开放神经网络交换)支持。PyTorch 还具有 TorchServe,这是一种易于使用的工具,可帮助大规模部署 PyTorch 模型。另一个优点是 PyTorch 与环境和云无关,这可以节省时间和金钱并实现协作。

Matplotlib

Matplotlib的主要优点是其令人惊叹的可视化效果。它是一个绘图库,拥有由大约 700 名贡献者组成的充满活力的社区。程序员最常使用 Matplotlib 进行数据可视化项目。到2023年,数据可视化市场规模可能达到约77.6亿美元,年复合增长率为9.47%。

Matplotlib 非常有用且内存消耗低。一些专业人士会使用 Matplotlib 来替代 MATLAB,因为它是免费且开源的。您还可以将此库与 Python 脚本、IPython Shell、Jupyter Notebook 等工具包一起使用。

Seaborn

Python 中的 Seaborn 数据可视化库提供了一个简单直观的界面,可以直接从 Pandas DataFrame 制作漂亮的图表。当用户以整齐的形式排列数据时,Seaborn 绘图功能通常只需一行代码即可通过分组、拆分、聚合和绘制数据来执行繁重的工作。在本文中,我将提供使用 Seaborn 库通过 Python 创建数据可视化的五个主要原因。


这里给大家分享一份Python全套学习资料,包括学习路线、软件、源码、视频、面试题等等,都是我自己学习时整理的,希望可以对正在学习或者想要学习Python的朋友有帮助!

零基础Python学习资源介绍

👉Python学习路线汇总👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)

在这里插入图片描述

👉入门学习视频👈

👉实战案例👈

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

在这里插入图片描述

👉100道Python练习题👈

检查学习结果。

👉面试刷题👈

在这里插入图片描述

在这里插入图片描述

资料领取

这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以点击下方微信卡片免费领取 ↓↓↓【保证100%免费】
或者

点此链接】领取

为了在Windows安装ADB工具,你可以按照以下步骤进行操作: 1. 首先,下载ADB工具包并解压缩到你自定义的安装目录。你可以选择将其解压缩到任何你喜欢的位置。 2. 打开运行窗口,可以通过按下Win+R键来快速打开。在运行窗口中输入"sysdm.cpl"并按下回车键。 3. 在系统属性窗口中,选择"高级"选项卡,然后点击"环境变量"按钮。 4. 在环境变量窗口中,选择"系统变量"部分,并找到名为"Path"的变量。点击"编辑"按钮。 5. 在编辑环境变量窗口中,点击"新建"按钮,并将ADB工具的安装路径添加到新建的路径中。确保路径正确无误后,点击"确定"按钮。 6. 返回到桌面,打开命令提示符窗口。你可以通过按下Win+R键,然后输入"cmd"并按下回车键来快速打开命令提示符窗口。 7. 在命令提示符窗口中,输入"adb version"命令来验证ADB工具是否成功安装。如果显示版本信息,则表示安装成功。 这样,你就成功在Windows安装ADB工具。你可以使用ADB工具来执行各种操作,如枚举设备、进入/退出ADB终端、文件传输、运行命令、查看系统日志等。具体的操作方法可以参考ADB工具的官方文档或其他相关教程。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [windows环境安装adb驱动](https://blog.csdn.net/zx54633089/article/details/128533343)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [Windows安装使用ADB简单易懂教程](https://blog.csdn.net/m0_37777700/article/details/129836351)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值