前言
Python仍然是开发人员趋之若鹜的最流行的编程语言之一。它不仅对于新用户来说是一种易于理解的语言,而且其允许在多个领域进行多样化的编程。在这篇博客中,我们将了解 2023 年的一些顶级 Python 库,看看到底是什么让它们发挥作用。有些是家喻户晓的名字,有些则在其社区内广为人知。
2023 年和 2024 年顶级 Python 库
NumPy
NumPy是 Python 科学计算的黄金标准,并且始终被认为是顶级 Python 库之一。它是一个用于数组操作的库,每月被下载数百次,在 GitHub 上拥有超过 25,000 颗星。它受欢迎的原因在于它被广泛应用于各个领域,包括数据科学、机器学习和计算物理。
NumPy 数组与 Python 中的列表类似,但它们针对性能进行了优化。NumPy 数组存储在连续的内存中,这使得它们的访问速度比列表快得多。NumPy 还提供了许多可用于对数组进行操作的数学函数,例如加法、减法、乘法和除法。
Scikit-learn
Scikit-learn是一个机器学习巨头,提供了大量算法和工具,使其成为许多数据科学家的首选库。它易于使用,具有文档齐全的 API 和大量可用的教程和示例。Scikit-learn 也是开源的,这使其成为学术和商业用途的流行选择。
Scikit-learn 中一些最流行的算法包括:
- 线性回归
- 逻辑回归
- 支持向量机 (SVM)
- 决策树
- 随机森林
- k-最近邻 (kNN)
TensorFlow
TensorFlow 最初由 Google Brain 的研究人员开发,在深度学习领域处于领先地位, TensorFlow的受欢迎程度源于其强大的功能和广泛的社区支持。随着人工智能在各个行业的爆炸式增长,TensorFlow 也越来越受欢迎,因为它拥有强大的工具、库和社区生态系统,不断推动机器学习的进步。
Pandas
当然,如果没有pandas,顶级 Python 库的列表就不完整。如果没有这个库,如果没有 pandas,数据分析就不会一样,因为 pandas 以其强大的数据结构和操作工具占据主导地位。
Pandas 提供了一种快速有效的方式来处理表格数据。它广泛应用于数据科学、金融和其他需要数据分析的领域。它包括几种专门为数据分析设计的数据结构和工具,例如:
- Series:一维数据数组。
- DataFrame:二维数据数组,具有行和列。
- 索引:DataFrame 中每一行或每一列的唯一标识符。
- MultiIndex:DataFrame 的分层索引。
- GroupBy:根据共同值对数据进行分组的工具。
- 数据操作:用于清理、转换和聚合数据的各种工具。
Django
Django是一个成熟且流行的 Python Web 框架,以其易用性和构建复杂 Web 应用程序的能力而闻名。它拥有完善的生态系统,拥有大量第三方库和工具。真正让 Django 与众不同的是以下几件事。首先,它易于使用,代码易于学习,并且有一个记录良好的 API。它也是一个强大的框架。它允许在生态系统内创建 Web 应用程序,甚至提供模板、路由和安全功能。
这个库的秘密武器之一是它的可扩展性。众所周知,拥有处理高流量的能力非常重要,并且 Django 允许 Web 应用程序轻松扩展。目前,Django 在 GitHub 上的星数仍超过 74,000 颗。
PyTorch
这个重要的库是一个开源机器学习框架,能够加速研究原型设计,使公司能够进入生产部署阶段。
PyTorch 的主要功能包括强大的云支持、丰富的工具生态系统、分布式训练和本机 ONNX(开放神经网络交换)支持。PyTorch 还具有 TorchServe,这是一种易于使用的工具,可帮助大规模部署 PyTorch 模型。另一个优点是 PyTorch 与环境和云无关,这可以节省时间和金钱并实现协作。
Matplotlib
Matplotlib的主要优点是其令人惊叹的可视化效果。它是一个绘图库,拥有由大约 700 名贡献者组成的充满活力的社区。程序员最常使用 Matplotlib 进行数据可视化项目。到2023年,数据可视化市场规模可能达到约77.6亿美元,年复合增长率为9.47%。
Matplotlib 非常有用且内存消耗低。一些专业人士会使用 Matplotlib 来替代 MATLAB,因为它是免费且开源的。您还可以将此库与 Python 脚本、IPython Shell、Jupyter Notebook 等工具包一起使用。
Seaborn
Python 中的 Seaborn 数据可视化库提供了一个简单直观的界面,可以直接从 Pandas DataFrame 制作漂亮的图表。当用户以整齐的形式排列数据时,Seaborn 绘图功能通常只需一行代码即可通过分组、拆分、聚合和绘制数据来执行繁重的工作。在本文中,我将提供使用 Seaborn 库通过 Python 创建数据可视化的五个主要原因。
这里给大家分享一份Python全套学习资料,包括学习路线、软件、源码、视频、面试题等等,都是我自己学习时整理的,希望可以对正在学习或者想要学习Python的朋友有帮助!
零基础Python学习资源介绍
👉Python学习路线汇总👈
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。(全套教程文末领取哈)
👉入门学习视频👈
👉实战案例👈
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉100道Python练习题👈
检查学习结果。
👉面试刷题👈
资料领取
这份完整版的Python全套学习资料已经上传网盘,朋友们如果需要可以点击下方微信卡片免费领取 ↓↓↓【保证100%免费】
或者
【点此链接】领取
