【离散数学】 SEU - 02 - 2021/03/05 - Applications of Propositional Logic and Propositional Equivalences

Discrete Mathematics and its Applications (8th Edition)
2021/03/05 - Applications of Propositional Logic and Propositional Equivalences



1 The Foundations: Logic and Proofs

1.2 Applications of Propositional Logic

1.2.2 Translating English Sentences

1.2.3 System Specifications

Example: “The automated reply cannot be sent when the file system is full.”
Solution: p → ¬ p p\rightarrow \neg p p¬p

A list of propoitions is consistent if it is possible to assign truth value to the propositional varibles so that each proposition is true.

1.2.5 Logic Puzzles

Example: An island has two kinds of inhabitants, knights, who always tell the truth while knaves always lie. A says “B is a knight”, B says “We are different types of people.” What are the types of A and B?

Logic Circuits

  • Inventer ( ¬ \neg ¬)
  • OR gate ( ∨ \vee )
  • AND gate ( ∧ \wedge )
    Logic Circuits

1.3 Propositional Equivalences

1.3.1 Introductions

A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a tautology. A compound proposition that is always false is called a contradiction. A compound proposition that is neither a tautology nor a con- tradiction is called a contingency.

1.3.2 Logical Equivalences

The compound propositions p p p and q q q are called logically equivalent if p ↔ q p \leftrightarrow q pq is a tautology. The notation p ≡ q p \equiv q pq denotes that p p p and q q q are logically equivalent. The symbol ⇔ \Leftrightarrow is sometimes used instead of ≡ \equiv .

Exapmle:

  • ¬ p ∨ q \neg p\vee q ¬pq is equivalent to p → q p\rightarrow q pq.
  • ¬ ( p ∧ q ) ≡ ¬ p ∨ ¬ q \neg(p\wedge q)\equiv \neg p \vee \neg q ¬(pq)¬p¬q [De morgan's Law I]
  • ¬ ( p ∨ q ) ≡ ¬ p ∧ ¬ q \neg(p\vee q)\equiv \neg p \wedge \neg q ¬(pq)¬p¬q [De morgan's Law II]
  • Identity Laws
  • Domination Laws
  • Idempotent Laws
  • Double Negation Law
  • Negation Laws
  • Commutative Laws
  • Associative Laws
  • Distributive Laws
  • Absorption Laws
Disjunctive Normal Form

A literal is a propositional variable or its negation.

formula is in disjunctive normal form (DNF) iff it is a disjunction of conjuctions of literals.

Theorem: Every proposition can be put into an quivalent DNF.

Proof:

  1. Emininate all operators except for negation, conjunction and disjunction by substituting logically equivalent formulas:
  • A → B ≡ ¬ A ∨ B A\rightarrow B\equiv \neg A\vee B AB¬AB
  • A ↔ B ≡ ( A → B ) ∧ ( B → A ) A\leftrightarrow B\equiv (A\rightarrow B)\wedge (B\rightarrow A) AB(AB)(BA)
  • A ⊕ B ≡ ( A → B ) ∨ ¬ ( B → A ) A\oplus B\equiv (A\rightarrow B)\vee\neg(B\rightarrow A) AB(AB)¬(BA)
  1. push negations inward using De Morgan’s laws:
  • ¬ ( A ∧ B ) ≡ ¬ A ∨ ¬ B \neg(A\wedge B)\equiv \neg A \vee \neg B ¬(AB)¬A¬B [De morgan's Law I]
  • ¬ ( A ∨ B ) ≡ ¬ A ∧ ¬ B \neg(A\vee B)\equiv \neg A \wedge \neg B ¬(AB)¬A¬B [De morgan's Law II]
    until they appear only before atomic propositions or atomic propositions preseded by negations.
  1. Eliminating sequences of negations by deleting double negation operators:
  • ¬ ¬ A ≡ A \neg\neg A\equiv A ¬¬AA
  1. The formula now consists of disjunctions and conjuctions of literals. Use the distrubutive laws:
  • A ∧ ( B ∨ C ) ≡ ( A ∧ B ) ∨ ( A ∧ C ) A\wedge(B\vee C)\equiv(A\wedge B)\vee(A\wedge C) A(BC)(AB)(AC)
    to eliminate disjunctions within conjuctions.

1.3.4 Constructing New Logical Equivalences

Related Notes

Note for MIT 6.042J - Lecture 1 Introductions and Proofs

Assignment

【离散数学】 SEU - Assignment 2 - 2021/03/05


ALL RIGHTS RESERVED © 2021 Teddy van Jerry
This blog is licensed under the CC 4.0 Licence.


See also

Teddy van Jerry’s CSDN Homepage
Teddy van Jerry’s GitHub Homepage

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值