【离散数学】 SEU - 04 - 2021/03/12 - Predicates and Quantifiers

Discrete Mathematics and its Applications (8th Edition)
2021/03/12 - Predicates and Quantifiers



1 The Foundations: Logic and Proofs

1.4 Predicates and Quantifiers

1.4.6 Precedence of Quantifiers

The quantifies ∀ \forall and ∃ \exists have higher precedence than all the logical operators.

1.4.7 Binding Variables

When a quantifier is used on the variable x x x, we say that this occurrence of the variable is bound. An occurrence of a variable that is not bound by a quantifier or set equal to a particular value is said to be free.

Example: “Every student in this class has taken a course in C++.”
Solution 1:
If U U U is all students in this class, define a proposition function C p p ( c ) Cpp(c) Cpp(c) denoting " x x x has taken a course in C++" and translate as ∀ x   C p p ( x ) \forall x\ Cpp(x) x Cpp(x).
Solution 2:
But is U U U is all people, also define a propositional function S ( x ) S(x) S(x) denoting " x x x is a student in this class" and translate as “ ∀ x   ( S ( x ) → C p p ( x ) ) \forall x\ (S(x)\rightarrow Cpp(x)) x (S(x)Cpp(x))”.
Wrong Solution:
∀ x   ( S ( x ) ∧ C p p ( x ) ) \forall x\ (S(x)\wedge Cpp(x)) x (S(x)Cpp(x)).

Example: “Some students in this class has taken a course in Java.”
Solution 1:
∃ x   J a v a ( x ) \exists x\ Java(x) x Java(x).
Solution 2:
∃ x   ( S ( x ) ∧ J a v a ( x ) ) \exists x\ (S(x) \wedge Java(x)) x (S(x)Java(x)).
Wrong Solution:
∃ x   ( S ( x ) → J a v a ( x ) ) \exists x\ (S(x)\rightarrow Java(x)) x (S(x)Java(x)).

Example: Introduce the propositional functions M a n ( x ) Man(x) Man(x) denoting " x x x is a man" and M o r t a l ( x ) Mortal(x) Mortal(x) denoteing " x x x is mortal".

The two premises are:
∀ x   ( M a n ( x ) → M o r t a l ( x ) ) \forall x\ (Man(x)\rightarrow Mortal(x)) x (Man(x)Mortal(x)) M a n ( S o c r a t e s ) Man(Socrates) Man(Socrates)

The conclusion is: M o r t a l ( S o c r a t e s ) Mortal(Socrates) Mortal(Socrates)

1.4.8 Logical Equivalences Involving Quantifiers

Statements involving predicates and quantifiers are logically equivalent if and only if they have the same truth value:

  • for every predicate substituted into these statements
  • for every domain of discourse used for the variables in the expressions
    The notation S ≡ T S\equiv T ST indicates that S S S and T T T are logically equivalent.

Example:

  • ∀ x   ( P ( x ) ∧ Q ( x ) ) ≡ ∀ x   P ( x ) ∧ ∀ x   Q ( x ) \forall x\ (P(x)\wedge Q(x))\equiv \forall x\ P(x) \wedge \forall x\ Q(x) x (P(x)Q(x))x P(x)x Q(x).
  • ∃ x   ( P ( x ) ∨ Q ( x ) ) ≡ ∃ P ( x ) ∨ ∃ x   Q ( x ) \exists x\ (P(x)\vee Q(x))\equiv \exists P(x) \vee \exists x\ Q(x) x (P(x)Q(x))P(x)x Q(x).
  • ∀ x   ¬ ¬ S ( x ) ≡ ∀ x   S ( x ) \forall x\ \neg\neg S(x)\equiv \forall x\ S(x) x ¬¬S(x)x S(x).

1.4.9 Negating Quantified Expressions

¬ ∀ x   P ( x ) \neg\forall x\ P(x) ¬x P(x) is equivalent to ∃ x   ¬ P ( x ) \exists x\ \neg P(x) x ¬P(x) are equivalent.
¬ ∃ x   P ( x ) \neg\exists x\ P(x) ¬x P(x) is equivalent to ∀ x   ¬ P ( x ) \forall x\ \neg P(x) x ¬P(x) are equivalent.
De Morgan's Laws for Quantifiers

1.4.10 Translating from English into Logical Expressions

Example: “Some Students in this class has visited Mexico.”
Solution: Let M ( x ) M(x) M(x) denote " x x x has visited Mexico" and S ( c ) S(c) S(c) denote " x x x is a student in this class" and U U U be all people.
∃ x   ( S ( x ) ∧ M ( x ) ) \exists x\ (S(x)\wedge M(x)) x (S(x)M(x))

Example: “Every student in this class has visited Canada or Mexico.”
Solution: Add C ( x ) C(x) C(x) denoting " x x x has visited Canada".
∀ x   ( S ( x ) → ( M ( x ) ∨ C ( x ) ) ) \forall x\ (S(x)\rightarrow (M(x)\vee C(x))) x (S(x)(M(x)C(x)))

Example: “Not all the students in this class have visited Mexico.”
Solution: ¬ ∀ x ( S ( x ) → M ( x ) ) \neg\forall x(S(x)\rightarrow M(x)) ¬x(S(x)M(x)) ∃ x   ( S ( x ) ∧ ¬ M ( x ) ) \exists x\ (S(x)\wedge\neg M(x)) x (S(x)¬M(x))

1.4.11 Using Quantifies in System Specifications

1.4.12 Examples from Lewis Carroll

Example
An assertion involving predicate is satisfiable if it is true

  • for some domains
  • some propositional functions that can be substituted for the predicates in the assertion

Otherwise it is unsatisfiable.

Example:
∀ x   ( F ( x ) ↔ T ( x ) ) \forall x\ (F(x)\leftrightarrow T(x)) x (F(x)T(x)) not valid but satisfiable
∀ x   ( F ( x ) ↔ ¬ F ( x ) ) \forall x\ (F(x)\leftrightarrow \neg F(x)) x (F(x)¬F(x)) unsatisfiable

1.5 Nested Quantifiers

1.5.1 Introduction

Example: “Every real number has an inverse.”
Solution: ∀ x   ∃ y   ( x + y = 0 ) \forall x\ \exists y\ (x+y=0) x y (x+y=0).

1.5.2 Understanding Statements Involving Nested Quantifiers

Nested Loops

Assignment

Section 1.4: 1. 5. 7. 13. 17. 25. 35.e) f) 39. 45.
SEU - Assignment 4 - 2021/03/12


ALL RIGHTS RESERVED © 2021 Teddy van Jerry
This blog is licensed under the CC 4.0 Licence.


See also

Teddy van Jerry’s CSDN Homepage
Teddy van Jerry’s GitHub Homepage

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值