【离散数学】 SEU - 16 - 2021/04/28 - Partial Orderings

Discrete Mathematics and its Applications (8th Edition)
2021/04/28 - Partial Orderings


9 Relations

9.6 Partial Orderings

9.6.3 Hasse Diagrams

In order theory, a Hasse diagram (/ˈhæsə/; German: [ˈhasə]) is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction. Concretely, for a partially ordered set ( S , ≼ ) (S, \preccurlyeq) (S,) one represents each element of S S S as a vertex in the plane and draws a line segment or curve that goes upward from x x x to y y y whenever y y y covers x x x (that is, whenever x ≼ y x \preccurlyeq y xy and there is no z z z such that x ≼ z ≼ y x \preccurlyeq z \preccurlyeq y xzy). These curves may cross each other but must not touch any vertices other than their endpoints. Such a diagram, with labeled vertices, uniquely determines its partial order. (From Wikipedia)

The construction of Hasse diagram

9.6.4 Maximal and Minimal Elements

Elements of posets that have certain extremal properties are important for many applications. An element of a poset is called maximal if it is not less than any element of the poset. That is, a a a is maximal in the poset ( S , ≼ ) (S, \preccurlyeq) (S,) if there is no b ≼ S b \preccurlyeq S bS such that a ≺ b a \prec b ab. Similarly, an element of a poset is called minimal if it is not greater than any element of the poset. That is, a is minimal if there is no element b ∈ S b \in S bS such that b ≺ a b \prec a ba. Maximal and minimal elements are easy to spot using a Hasse diagram. They are the “top” and “bottom” elements in the diagram.

Sometimes there is an element in a poset that is greater than every other element. Such an element is called the greatest element. That is, a is the greatest element of the poset ( S , ≼ ) (S, \preccurlyeq) (S,) if b ≺ a b \prec a ba for all b ∈ S b\in S bS. The greatest element is unique when it exists [see Exercise 40(a)]. Likewise, an element is called the least element if it is less than all the other elements in the poset. That is, a is the least element of ( S , ≼ ) (S, \preccurlyeq) (S,) if a ≼ b a\preccurlyeq b ab for all b ∈ S b\in S bS. The least element is unique when it exists [see Exercise 40(b)].

Sometimes it is possible to find an element that is greater than or equal to all the elements in a subset A A A of a poset ( S , ≼ ) (S, \preccurlyeq) (S,). If u is an element of S S S such that a ≼ u a \preccurlyeq u au for all elements a ∈ A a \in A aA, then u u u is called an upper bound of A A A. Likewise, there may be an element less than or equal to all the elements in A. If l is an element of S such that l ≼ a l\preccurlyeq a la for all elements a ∈ A a\in A aA, then l is called a lower bound of A A A.

9.6.5 Lattices

A partially ordered set in which every pair of elements has both a least upper bound and a greatest lower bound is called a lattice.


ALL RIGHTS RESERVED © 2021 Teddy van Jerry
This blog is licensed under the CC 4.0 Licence.


See also

Teddy van Jerry’s CSDN Homepage
Teddy van Jerry’s GitHub Homepage

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值