【离散数学】 SEU - 28 - 2021/06/11 - Lattice and Boolean Algebra

Discrete Mathematical Structures (6th Edition)
2021/06/09 - Lattice and Boolean Algebra


Lattice and Boolean Algebra

Lattice

Homomorphism

Distributive Lattice

Distributive Lattice: <  ⁣ L , ∧ , ∨  ⁣ > <\!L,∧,∨\!> <L,,> is a lattice, ∀ a , b , c ∈ L \forall a,b,c∈L a,b,cL
a ∧ ( b ∨ c ) = ( a ∧ b ) ∨ ( a ∧ c ) a ∧ ( b ∨ c )=( a ∧ b ) ∨ ( a ∧ c ) a(bc)=(ab)(ac)
a ∨ ( b ∧ c ) = ( a ∨ b ) ∧ ( a ∨ c ) a ∨ ( b ∧ c )=( a ∨ b ) ∧ ( a ∨ c ) a(bc)=(ab)(ac)

Note: Actually, distributive lattice only needs to satisfy one of them.

Diamond lattice
Dimond lattice (not distributive lattice)
Pentagon lattice
Pentagon lattice (not distributive lattice)

Theorem: A lattice L L L is nondistributive if and only if it contains a sublattice that is isomorphic to the diamond lattice or the pentagon lattice.

Greatest (Least) Element

The greatest (least) element a a a:Given lattice <  ⁣ L , ≼ > <\!L, ≼> <L,>, for any b b b, we have b ≼ a   ( a ≼ b ) b≼a\ (a≼b) ba (ab)

The greatest (least) element of a lattice is unique, if it exists.
Denoted as 1 ( 0 ) 1 (0) 1(0).

Bounded lattice <  ⁣ L , ≼ > <\!L,≼> <L,>: <  ⁣ L , ≼ > <\!L,≼> <L,> is a lattice and it has the greatest and least elements.
Denoted as <  ⁣ L , ∧ , ∨ , 1 , 0  ⁣ > <\! L, ∧, ∨, 1, 0\!> <L,,,1,0>.

Complement element

Definition: <  ⁣ L , ∧ , ∨ , 0 , 1  ⁣ > <\! L, ∧, ∨, 0, 1\!> <L,,,0,1> is a bounded lattice, a ∈ L a∈L aL, if there exists b ∈ L b∈L bL
a ∧ b = 0 , a ∨ b = 1 a ∧ b = 0,a ∨ b = 1 ab=0ab=1
b b b is the complement element of a a a, denoted as a ′ a' a.

Definition: <  ⁣ L , ∧ , ∨ , 1 , 0  ⁣ > <\! L, ∧, ∨, 1, 0\!> <L,,,1,0> is a bounded lattice, if for any a ∈ L a ∈ L aL, a a a has a complement element a ′ a' a, then L L L is a complemented lattice.

Theorem:  ⁣ < L , ∧ , ∨ , 0 , 1  ⁣ > \!< L,∧,∨,0,1 \!> <L,,,0,1> is bounded and distributive. If a ∈ L a∈L aL and a a a has its complement element b b b, then b b b is the unique complement element of a a a.

Review
Review

Boolean Algebra

Definition: A Boolean algebra is a lattice that is distributive and complemented.

Example: <  ⁣ P ( A ) , ∪ , ∩ , ∼ , ∅ , A  ⁣ > <\!P(A),∪,∩,\sim,\varnothing,A\!> <P(A),,,,,A> is a Boolean algebra.
Example

Theorem: In Boolean Algebra B B B, a , b ∈ B a, b∈B a,bB, if a ≼ b a ≼ b ab, then we have:
(1) a ∧ b ’ = 0 a ∧ b’= 0 ab=0
(2) a ’ ∨ b = 1 a’∨ b = 1 ab=1

Properties

Theorem: Given <  ⁣ B , ∧ , ∨ , ′ , 0 , 1  ⁣ > <\!B,∧,∨,',0,1\!> <B,,,,0,1>
(1) For every a ∈ B a∈B aB, we have ( a ′ ) ′ = a (a')'=a (a)=a
(2) For every a , b ∈ B a,b\in B a,bB, a and b have complements a ′ , b ′ a',b' a,b, then
( a ∧ b ) ′ = a ′ ∨ b ′ , ( a ∨ b ) ′ = a ′ ∧ b ′ (a∧b)'=a'∨b', (a∨b)'=a'∧b' (ab)=ab,(ab)=ab

Theorem: <  ⁣ B , ∧ , ∨ , ′ , 0 , 1  ⁣ > <\!B,∧,∨,',0,1\!> <B,,,,0,1> is a Boolean algebra, the following laws hold:
(1) a ∧ b = b ∧ a ,   a ∨ b = b ∨ a a∧b=b∧a,\ a∨b=b∨a ab=ba, ab=ba
(2) ( a ∧ b ) ∧ c = a ∧ ( b ∧ c ) ,   ( a ∨ b ) ∨ c = a ∨ ( b ∨ c ) (a∧b)∧c=a∧(b∧c),\ (a∨b)∨c=a∨(b∨c) (ab)c=a(bc), (ab)c=a(bc)
(3) a ∧ a = a ,   a ∨ a = a a∧a=a,\ a∨a=a aa=a, aa=a
(4) a ∧ ( a ∨ b ) = a ,   a ∨ ( a ∧ b ) = a a∧(a∨b)=a,\ a∨(a∧b)=a a(ab)=a, a(ab)=a
(5) a ∨ ( b ∧ c ) = ( a ∨ b ) ∧ ( a ∨ c ) ,   a ∧ ( b ∨ c ) = ( a ∧ b ) ∨ ( a ∧ c ) a∨(b∧c)=(a∨b)∧(a∨c),\ a∧(b∨c)=(a∧b)∨(a∧c) a(bc)=(ab)(ac), a(bc)=(ab)(ac)
(6) a ∨ 0 = a ,   a ∧ 1 = a a∨0=a,\ a∧1=a a0=a, a1=a
(7) a ∨ 1 = 1 ,   a ∧ 0 = 0 a∨1=1,\ a∧0=0 a1=1, a0=0
(8) a ∨ a ′ = 1 ,   a ∧ a ′ = 0 a∨a'=1,\ a∧a'=0 aa=1, aa=0
(9) a = a ′ ′ a=a'' a=a
(10) ( a ∨ b ) ′ = a ′ ∧ b ′ ; ( a ∧ b ) ′ = a ′ ∨ b ′ (a∨b)'=a'∧b';(a∧b)'=a'∨b' (ab)=ab;(ab)=ab

Another Definition

<  ⁣ B , ∗ , ⊕  ⁣ > <\!B, * ,\oplus\!> <B,,> is an algebraic system, if ∀ a , b , c ∈ B \forall a,b,c∈B a,b,cB the following conditions hold
H1:  a ∗ b = b ∗ a , a ⊕ b = b ⊕ a (Commutative Laws) \text{H1: }a*b = b*a, a\oplus b = b\oplus a \tag{Commutative Laws} H1: ab=ba,ab=ba(Commutative Laws)
H2:  a ∗ ( b ⊕ c ) = a ∗ b ⊕ a ∗ c ,   a ⊕ ( b ∗ c ) = ( a ⊕ b ) ∗ ( a ⊕ c ) (Distributive Laws) \text{H2: } a*(b\oplus c) = a*b\oplus a*c,\ a\oplus(b*c) = (a\oplus b)*(a\oplus c) \tag{Distributive Laws} H2: a(bc)=abac, a(bc)=(ab)(ac)(Distributive Laws)
H3: for 0 and 1 in  B , ∀ a ∈ B , a ∗ 1 = a , a ⊕ 0 = a (Identity Laws) \text{H3: for 0 and 1 in }B, \forall a∈B, a*1 = a, a\oplus 0 = a \tag{Identity Laws} H3: for 0 and 1 in B,aB,a1=a,a0=a(Identity Laws)
H 4 : ∀ a ∈ B , there exists  a ′ ∈ B , s . t .   a ⊕ a ′ = 1 , a ∗ a ′ = 0 (Complementation Laws) H4: \forall a∈B\text{, there exists }a'∈B, s.t.\ a\oplus a' = 1, a*a' = 0 \tag{Complementation Laws} H4:aB, there exists aB,s.t. aa=1,aa=0(Complementation Laws)
then <  ⁣ B , ∗ , ⊕ , 0 , 1  ⁣ > <\!B, * ,\oplus, 0, 1\!> <B,,,0,1> is a Boolean algebra.

Sub-Boolean Algebra

Sub-Boolean algebra H H H: <  ⁣ B , ∧ , ∨ , ′ , 0 , 1  ⁣ > <\!B,∧,∨,',0,1\!> <B,,,,0,1> is an algebra
H H H is a subset of B B B,
H H H contains 0 0 0 and 1 1 1,
H H H is closed w.r.t. ∧ , ∨ , ′ ∧, ∨, ' ,,

Homomorphism

Homomorphism f f f: < B , ∧ , ∨ , ′ , 0 , 1 > < B,∧,∨,',0,1 > <B,,,,0,1> and <  ⁣ B , ⊕ , ⊗ , 0 ‾ , α , β  ⁣ > <\!B,\oplus,\otimes ,\overline{\color{white}0},α,β\!> <B,,,0,α,β> are two Boolean algebra. f f f is a mapping from B B B to B ′ B' B, satisfying

  • f ( a + b ) = f ( a ) ⊕ f ( b ) f(a+b)=f(a)\oplus f(b) f(a+b)=f(a)f(b)
  • f ( a ⋅ b ) = f ( a ) ⊗ f ( b ) f(a\cdot b)=f(a)\otimes f(b) f(ab)=f(a)f(b)
  • f ( a ′ ) = f ( a ) ‾ f(a')=\overline{f(a)} f(a)=f(a)
  • f ( 0 ) = α , f ( 1 ) = β f(0)=α, f(1)=β f(0)=α,f(1)=β

Atom

a a a covers b b b: b ≤ a b≤a ba and b ≠ a b≠a b=a, there is no other element c c c,such that b < c b<c b<c and c < a c<a c<a.
Atom: <  ⁣ B , ∧ , ∨ , ′ , 0 , 1  ⁣ > <\! B, ∧, ∨, ', 0, 1 \!> <B,,,,0,1> is a Boolean algebra,if a ∈ B a∈B aB and a a a covers 0 0 0,then a a a is an atom of B B B.


ALL RIGHTS RESERVED © 2021 Teddy van Jerry
This blog is licensed under the CC 4.0 Licence.


See also

Teddy van Jerry’s Personal Homepage
Teddy van Jerry’s CSDN Homepage
Teddy van Jerry’s GitHub Homepage

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值