一、格
假设(L, ≤)为偏序集,如果对于任意 a, b∈L ,{a, b} 都存在上确界和下确界,则称 (L, ≤) 为一个格(lattice)
显然上确界和下确界有唯一性
上确界LUB({a, b})记作a∨b,称之为a与b的并(join)
下确界GLB({a, b})记作a∧b,称之为a与b的交(meet)
举例:对任意a, b∈L,a≤b
全序集(A , ≤)必然是格,a∨b=b,a∧b=a
(Z+, |)是一个格,a∨b=LCM(a , b),a∧b=GCD(a , b)
(P(S) , ⊆)是一个格(幂集格),a∨b=a∪b,a∧b=a∩b
恒等关系IS是偏序关系,但(S , IS)不是格(如果偏序集中存在孤立顶点,一定不会构成格)
a∨b=b a≤b a∧b=a,因此≤关系实际可用∨和∧来表示,(L , ≤)可记作(L, ∨ , ∧)
对任意a, b, c∈L,显然有:
(1)幂等律:a∨a=a∧a=a
(2)交换律:a∨b=b∨a,a∧b=b∧a
(3)结合律:(a∨b)∨c=a∨(b∨c),(a∧b)∧c=a∧(b∧c)
(4)吸收律:a∨(a