离散数学知识点总结(7)-格

本文介绍了离散数学中的格理论,包括格的定义、上确界与下确界、等价定义以及子格的概念。同时,文章也探讨了布尔代数,如分配格、有界格、补元和布尔代数的特性,如德摩根定律和原子。内容涵盖了格的运算性质和在命题代数、逻辑及数字电路中的应用。
摘要由CSDN通过智能技术生成

一、格

假设(L, ≤)为偏序集,如果对于任意 a, b∈L ,{a, b} 都存在上确界和下确界,则称 (L, ≤) 为一个格(lattice)

显然上确界和下确界有唯一性

上确界LUB({a, b})记作a∨b,称之为a与b的并(join)

下确界GLB({a, b})记作a∧b,称之为a与b的交(meet) 

举例:对任意a, b∈L,a≤b

序集(A , ≤)必然是格a∨b=ba∧b=a

(Z+, |)是一个格a∨b=LCM(a , b)a∧b=GCD(a , b)

(P(S) , )是一个格(幂集格),a∨b=a∪ba∧b=a∩b

恒等关系IS是偏序关系,但(S , IS)不是格如果偏序集中存在孤立顶点,一定不会构成格)

a∨b=b  a≤b  a∧b=a因此≤关系实际可用∨和∧来表示(L , ≤)可记作(L∨ , ∧

对任意a, b, c∈L,显然有:

1)幂等律:a∨a=a∧a=a

2交换律a∨b=b∨aa∧b=b∧a

3)结合律:(a∨b)∨c=a∨(b∨c)(a∧b)∧c=a∧(b∧c)

4)吸收律:a∨(a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值