huggingface的transformers训练bert

目录

理论

实践


理论

https://arxiv.org/abs/1810.04805

BERT(Bidirectional Encoder Representations from Transformers)是一种自然语言处理(NLP)模型,由Google在2018年提出。它是基于Transformer模型的预训练方法,通过在大规模的无标注文本上进行预训练,学习到了丰富的语言表示。

BERT的主要特点是双向性预训练-微调框架。在传统的语言模型中,只使用了单向的上下文信息,而BERT利用了双向Transformer编码器来同时考虑上下文的信息,使得模型能够更好地理解句子中的语义和关系。BERT采用了Transformer的多层编码器结构,其中包含了自注意力机制(self-attention mechanism),能够有效地捕捉句子中不同位置的依赖关系。

单向的Transformer一般被称为Transformer decoder,其每一个token(符号)只会attend到目前往左的token。而双向的Transformer则被称为Transformer encoder,其每一个token会attend到所有的token。

BERT模型通过两个阶段的训练来获得语言表示。首先,它在大规模无标注的文本上进行预训练,使用两个任务:掩码语言建模(Masked Language Modeling,MLM)和下一句预测(Next Sentence Prediction,NSP)。

MLM任务中,随机掩盖输入句子的一些词汇,模型需要预测这些被掩盖的词汇。MLM任务的目的是让模型通过上下文来推断被掩盖的词汇,从而学习到丰富的语言表示。在预训练阶段,BERT模型会使用大规模的无标注文本进行训练,其中包括了来自维基百科、新闻文章、书籍等的文本数据。模型在这些大规模数据上进行预训练,通过尝试预测被掩盖词汇的方法来学习词汇的上下文关系和语义。在MLM任务中,模型的输入句子经过编码器(Transformer)进行编码,然后通过一个全连接层(输出层)来预测被掩盖的词汇。对于被掩盖的位置,模型会生成一个概率分布,以表示每个可能的词汇是被掩盖位置的预测。通常情况下,模型会根据预训练过程中的目标函数(如交叉熵损失)来优化预测结果。通过进行MLM任务的预训练,BERT模型能够学习到词汇的上下文信息和语义表示,从而在下游任务中具有更好的表现。在微调阶段,模型会使用有标签的数据进行进一步的训练,以适应特定任务的要求,并通过微调来提升模型在特定任务上的性能。对比gpt,中间的词只能和前面的词做attention而不能和后面的词做attention,所以没法做到上下文综合理解。

在NSP任务中,模型接收两个句子作为输入,要判断这两个句子是否是原文中的连续句子。

在预训练完成后,BERT模型可以用于各种下游任务的微调,如文本分类、命名实体识别、问答等。在微调阶段,模型会在特定任务的标注数据上进行进一步的训练,以适应具体任务的要求。只需要添加一个额外的输出层进行fine-tune,就可以在各种各样的下游任务中取得state-of-the-art的表现。在这过程中并不需要对BERT进行任务特定的结构修改。

RoBERTa(Robustly Optimized BERT Approach)是由Facebook AI于2019年提出的一种语言模型,它是在BERT模型的基础上进行改进和优化的。RoBERTa的目标是通过更大规模的数据和更长的训练时间来获得更强大的语言表示能力。相比于BERT,RoBERTa采用了一系列的训练技巧和策略,如动态掩码、更长的训练序列、更大的批量大小等,以提升模型的性能。RoBERTa在多项自然语言处理任务上取得了显著的性能提升,并成为了当前领域内的重要基准模型之一。

实践

https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling

安装:

git clone https://github.com/huggingface/transformers
cd transformers
pip install .
pip install -r requirements.txt
python run_clm.py \
    --model_name_or_path openai-community/gpt2 \
    --dataset_name wikitext \
    --dataset_config_name wikitext-2-raw-v1 \
    --per_device_train_batch_size 8 \
    --per_device_eval_batch_size 8 \
    --do_train \
    --do_eval \
    --output_dir /tmp/test-clm

RobertaForMaskedLM = RobertaModel + RobertaLMHead

RobertaModel = RobertaEmbeddings + RobertaEncoder + RobertaPooler

RobertaEmbeddings = nn.Embedding(word,position,token_type) + nn.LayerNorm + nn.Dropout

RobertaEncoder = nn.ModuleList([RobertaLayer(config))

RobertaLayer = RobertaAttention + RobertaIntermediate + RobertaOutput

RobertaAttention = RobertaSelfAttention + RobertaSelfOutput

基本上就是x--》q,k,v-->q*k-->mask-->softmax-->*v

RobertaIntermediate = Fc + activate

RobertaOutput = Linear + dropout + layernorm

RobertaPooler = Linear + 激活函数Tanh

RobertaLMHead = Linear + gelu + layernorm +linear

总结:

RobertaForMaskedLM = RobertaModel + RobertaLMHead

        RobertaModel = RobertaEmbeddings + RobertaEncoder + RobertaPooler

            RobertaEmbeddings = nn.Embedding(word,position,token_type) + nn.LayerNorm + nn.Dropout

            RobertaEncoder = nn.ModuleList([RobertaLayer(config))

                    RobertaLayer = RobertaAttention + RobertaIntermediate + RobertaOutput * 12

                              RobertaAttention = RobertaSelfAttention + RobertaSelfOutput

                              RobertaIntermediate = Fc + activate

              ​​​​​​​                RobertaOutput = Linear + dropout + layernorm

          ​​​​​​​   RobertaPooler = Linear + 激活函数Tanh

       RobertaLMHead = Linear + gelu + layernorm +linear

  • 14
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
中文预训练ALBERT模型 概述 中文语料上预训练ALBERT模型:参数更少,效果更好。预训练小模型也能拿下13项NLP任务,ALBERT三大改造登顶GLUE基准、 一键运行10个数据集、9个基线模型、不同任务上模型效果的详细对比,见中文语言理解基准测评 CLUE benchmark 一键运行CLUE中文任务:6个中文分类或句子对任务(新) 使用方式: 1、克隆项目 git clone https://github.com/brightmart/albert_zh.git 2、运行一键运行脚本(GPU方式): 会自动下载模型和所有任务数据并开始运行。 bash run_classifier_clue.sh 执行该一键运行脚本将会自动下载所有任务数据,并为所有任务找到最优模型,然后测试得到提交结果 模型下载 Download Pre-trained Models of Chinese 1、albert_tiny_zh, albert_tiny_zh(训练更久,累积学习20亿个样本),文件大小16M、参数为4M 训练和推理预测速度提升约10倍,精度基本保留,模型大小为bert的1/25;语义相似度数据集LCQMC测试集上达到85.4%,相比bert_base仅下降1.5个点。 lcqmc训练使用如下参数: --max_seq_length=128 --train_batch_size=64 --learning_rate=1e-4 --num_train_epochs=5 albert_tiny使用同样的大规模中文语料数据,层数仅为4层、hidden size等向量维度大幅减少; 尝试使用如下学习率来获得更好效果:{2e-5, 6e-5, 1e-4} 【使用场景】任务相对比较简单一些或实时性要求高的任务,如语义相似度等句子对任务、分类任务;比较难的任务如阅读理解等,可以使用其他大模型。 例如,可以使用Tensorflow Lite在移动端进行部署,本文随后针对这一点进行了介绍,包括如何把模型转换成Tensorflow Lite格式和对其进行性能测试等。 一键运行albert_tiny_zh(linux,lcqmc任务): git clone https://github.com/brightmart/albert_zh cd albert_zh bash run_classifier_lcqmc.sh albert_tiny_google_zh(累积学习10亿个样本,google版本) 模型大小16M、性能与albert_tiny_zh一致 albert_small_google_zh(累积学习10亿个样本,google版本) 速度比bert_base快4倍;LCQMC测试集上比Bert下降仅0.9个点;去掉adam后模型大小18. 2、albert_large_zh,参数量,层数24,文件大小为64M 参数量和模型大小为bert_base的六分之一;在口语化描述相似性数据集LCQMC的测试集上相比ber 3、albert_base_zh(额外训练了1.5亿个实例即 36k steps * batch_size 4096); albert_base_zh(小模型体验版), 参数量12M, 层数12,大小为40M 参数量为bert_base的十分之一,模型大小也十分之一;在口语化描述相似性数据集LCQMC的测试集上相比bert_base下降约0.6~1个点; 相比未预训练,albert_base提升14个点 4、albert_xlarge_zh_177k ; albert_xlarge_zh_183k(优先尝试)参数量,层数24,文件大小为230M 参数量和模型大小为bert_base的二分之一;需要一张大的显卡;完整测试对比将后续添加;batch_si 快速加载 依托于Huggingface-Transformers 2.2.2,可轻松调用以上模型。 tokenizer = AutoTokenizer.from_pretrained("MODEL_NAME") model = AutoModel.from_pretrained("MODEL_NAME") 其中MODEL_NAME对应列表如下: 模型名 MODEL_NAME albert_tiny_google_zh voidful/albert_chinese_tiny albert_small_google_zh voidful/albert_chinese_small albert_base_zh (from google) voidful/albert_chinese_base albert_large_zh (from
### 回答1: 好的,我很乐意帮助您使用huggingface transformerstransformers是一个自然语言处理库,提供了许多预训练的模型和工具,可以用于各种NLP任务。 以下是使用transformers的一些步骤: 1. 安装transformers库: 您可以使用pip在终端或命令提示符中安装transformers库。请执行以下命令: ``` pip install transformers ``` 2. 加载预训练模型: transformers库提供了许多预训练模型,您可以选择适合您的任务的模型。例如,如果您想对文本进行情感分析,可以使用BERT模型。您可以使用以下代码加载预训练模型: ```python from transformers import BertModel, BertTokenizer tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') ``` 3. 处理数据: 在使用模型之前,您需要将数据转换为模型可以处理的格式。您可以使用tokenizer将文本转换为tokens,并使用model将tokens转换为模型可以处理的张量。例如,以下是一个将句子编码为BERT输入的示例: ```python text = "This is a sample sentence." encoded_input = tokenizer(text, padding=True, truncation=True, return_tensors='pt') output = model(**encoded_input) ``` 在这里,我们使用padding和truncation参数将所有句子都填充或截断为相同的长度,以便于模型处理。return_tensors参数指定我们想要输出PyTorch张量格式的编码输入。 4. 进行预测: 现在,您可以使用模型进行预测。对于分类任务,您可以使用模型的输出进行分类。例如,在情感分析任务中,您可以使用输出进行情感预测: ```python import torch logits = output.last_hidden_state.mean(dim=1) # 取最后一层隐藏状态的平均值作为输入特征 predictions = torch.softmax(logits, dim=-1) ``` 在这里,我们将最后一层隐藏状态的平均值作为输入特征,并使用softmax函数将输出转换为概率分布。您可以使用这些概率进行分类预测。 这是一个基本的使用transformers进行NLP任务的示例。希望这可以帮助您入门。如果您有任何问题,请随时提问。 ### 回答2: Huggingface transformers是自然语言处理领域的一个开源框架,专门用于处理文本数据的预处理、模型训练和部署等任务。它目前支持多种预训练模型,包括BERT、GPT、RoBERTa和T5等,还提供了多个预训练模型的权重文件,方便用户直接使用。 Huggingface transformers提供了方便易用的API和示例代码,使得用户可以在少量的代码修改下快速搭建自己的模型。用户只需要按照要求将输入文本转换成模型可接受的格式,就可以使用预训练模型进行文本分类、文本生成、文本翻译等任务。 使用Huggingface transformers可以方便地调整和优化模型的结构和参数,以达到更好的性能。用户可以选择适合自己需求的模型,同时还可以对预处理和后处理等过程进行自定义,来满足不同任务的需求。 除了提供预训练模型和API,Huggingface transformers还支持多种部署方式。用户可以选择将模型部署到云端,也可以将模型部署到移动端或嵌入式设备等环境。 总之,Huggingface transformers是一个功能强大、易于使用的自然语言处理框架,提供了多种预处理、模型训练和部署等功能,能帮助用户快速建立自己的自然语言处理应用。 ### 回答3: Hugging Face Transformers是一个用于自然语言处理任务的Python库,其主要应用是针对预训练模型的微调和推断。该库旨在使用户能够轻松使用各种已有的预训练模型,包括BERT和GPT2等。 它提供了一组工具,以简化使用这些先进技术的过程。 使用Hugging Face Transformers,用户可以快速地构建用于特定自然语言处理任务的模型,如文本分类、命名实体识别、文本生成等。Hugging Face Transformers还提供了一种方法,帮助用户优化文本数据的预处理,以获得更好的性能。该库还提供了各种工具,可以帮助用户对模型进行解释和可视化。 在使用Hugging Face Transformers时,用户首先需要选择一个合适的预训练模型,并使用句子分隔技术将其输入拆分为一组短文本段。 接着,用户需要对该模型进行微调,以适应他们自己的特定任务。Hugging Face Transformers提供了一组简单的API,以便用户轻松地完成这些步骤。 使用Hugging Face Transformers的主要优点是,它使得使用先进的自然语言处理技术变得非常简单。它提供了一组易于使用的工具,其中包括各种自然语言处理任务的预训练模型,以及用于微调和推理的API。此外,Hugging Face Transformers还提供了一些工具,可以帮助用户分析和可视化他们的模型并提高模型的性能。 总之,Hugging Face Transformers是一个完善的自然语言处理框架,可以使得使用先进技术的自然语言处理任务变得更加容易。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值