域适应(医学图像分析邻域自适应)

背景:
计算机辅助医学图像分析中使用的机器学习技术通常会受到源 / 参考数据与目标数据之间分布差异引起的领域偏移问题的影响。

相关名词解释:
域偏移问题:在图像分析中,通常假设训练数据集(源 / 参考域)和测试数据集(目标域)具有相同的数据分布 。然而,这个假设过于强烈,在实践中可能并不成立。先前的研究表明,测试误差通常与训练和测试数据集之间的分布差异成正比 。这被称为 “ 域偏移 ” 问题 
所以域适应就是用来最小化不同但相关的域/数据集之间的分布差异。
领域自适应与迁移学习:迁移学习即为将在一个数据集中学习到的特征用于一个相似的数据集实现相关任务。
领域自适应是迁移学习的特殊情况,用于在源领域与目标领域的分布差异太大时,让源领域的特征进行一些自适应方法,从而可用于目标领域的任务。
现有方法分类:

现有方法分为浅层模型(浅层域适应方法通常依赖于人工设计的图像特征和传统的机器学习型。)和深层模型(避免手工特征工程,通常将特征学习和模型训练集成到端到端学习模型中,其中数据适应以任务为导向的方式进行。),每个模型进一步分为监督方法、半监督方法和无监督方法。
模态差异 : 单模态域自适应 (在单模态域自适应中,源域和目标域共享相同的数据模态。)& 跨模态域自适应
单源域自适应 & 多源域自适应:单源域自适应通常基于只有一个源域的假设,但这种假设过于严格,在实际中可能并不成立。为了解决训练数据可能来自多个站点 / 域的场景,提出了多源域自适应。由于不同源域之间也存在数据异质性,多域自适应相当具有挑战性。现有的大多数针对医学图像分析的域自适应方法都属于单源域自适应类别。
自适应步骤 : 单步自适应(在单步自适应中,由于源域和目标域之间关系相对紧密,源域和目标域之间的自适应在一步内完成。) & 多步自适应 (对于源域和目标域之间数据异质性显著(例如,
从 ImageNet 到医学图像数据集)的场景,提出了多步自适应方法(也称为远距离 / 传递域自适应),其中通常引入中间域来弥合源域和目标域之间的分布差距。)
基于人工特征和传统机器学习模型的浅层领域自适应方法(两种策略:1 )实例加权(简单说就是根据样本实例的相关性来分配权重,相关性越高,权重越大),2 )特征变换(将源域与目标域通过一些方法,放到同一个特征空间,从而减小域偏移)):
论文然后从有监督浅层域自适应,半监督浅层域自适应,无监督浅层域自适应,多源浅层域自适应四个方面提出了一些例子,这里不赘述。
深度领域自适应方法
深度学习极大地推动了人工智能和机器学习的发展。通过在大规模标注数据上以全监督的方式进行训练,CNN 在计算机视觉和医学图像分析领域取得了突破。
也是从有监督浅层域自适应,半监督浅层域自适应,无监督浅层域自适应,多源浅层域自适应四个方面提出了一些例子,这里不详细说明其中的例子和其方法。
讨论:
 医学图像分析数据自适应的挑战:

1) 3D/4D 体素表示:设计先进的领域自适应模型以有效地捕获医学图像中包含的 3D 或 4D 结构信息是一个挑战。

2) 训练数据有限

3) 互模态异质性:大的互模态差异给不同领域之间有效知识迁移带来了许多困难。        

未来研究趋势:

1) 针对域适应的特定任务 3D/4D 模型

2) 无监督域适应

3) 多模态域适应:

4) 多源 / 多目标域自适应:

5) 无源域自适应

结论:本文对医学影像分析领域自适应的最新进展进行了综述。我们将现有方法分为浅层和深层模型,每个类别进一步细分为监督、半监督和无监督方法。我们还介绍了用于域自适应的现有基准医学影像数据集,总结了潜在挑战并讨论了未来研究方向。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值