下载阿里Qwen-1.8B 模型文件并放置到本地路径?

如果是手动下载 Qwen-1.8B 模型文件并将其放置到本地路径,可以通过以下步骤完成。这种方法适合网络环境受限(如下载速度慢或无法直接访问 Hugging Face)的用户。

1. 准备工作

(1)创建本地存储目录
在您的计算机上创建一个目录用于存放模型文件。例如:
Windows:C:\models\qwen-1.8b
Linux/Mac:/home/user/models/qwen-1.8b
(2)安装必要的工具
确保您已经安装了以下工具:
Git LFS(用于下载大文件):https://git-lfs.github.com/
Hugging Face CLI(可选):通过 pip install huggingface_hub 安装。

2. 下载 Qwen-1.8B 模型文件

(1)使用 Hugging Face 网站下载
打开 Hugging Face 模型页面:
假设模型名称为 Qwen/Qwen-1.8B,访问地址为:
https://huggingface.co/Qwen/Qwen-1.8B
点击“Files and versions”选项卡,查看模型文件列表。
下载所有必要的文件:
config.json:模型配置文件。
pytorch_model.bin 或类似权重文件(可能有多个分片,如 pytorch_model-00001-of-00002.bin)。
tokenizer_config.json 和 vocab.json:分词器相关文件。
将下载的文件解压后放入本地存储目录(如 C:\models\qwen-1.8b)。
(2)使用 Git LFS 下载
克隆模型仓库到本地:

git lfs install
git clone https://huggingface.co/Qwen/Qwen-1.8B

克隆完成后,模型文件会自动下载到当前目录(如 Qwen-1.8B 文件夹)。
将克隆的文件夹移动到您指定的本地路径(如 C:\models\qwen-1.8b)。

(3)使用 Hugging Face CLI 下载
安装 Hugging Face CLI 工具:

pip install huggingface_hub

登录 Hugging Face 账号(如果需要):

huggingface-cli login

使用 CLI 下载模型:

huggingface-cli download Qwen/Qwen-1.8B --local-dir C:\models\qwen-1.8b

3. 验证模型文件完整性

在将模型文件放置到本地路径后,建议验证文件是否完整:

确保以下文件存在:
config.json
pytorch_model.bin(或分片文件)
tokenizer_config.json
vocab.json 或其他分词器文件。
如果文件缺失,重新下载对应的文件。

4. 加载本地模型

(1)加载模型代码
使用以下 Python 脚本加载本地模型并生成文本:

from transformers import AutoModelForCausalLM, AutoTokenizer
# 本地模型路径
model_path = "C:/models/qwen-1.8b"
# 加载分词器和模型
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
# 设置模型在 CPU 上运行
model.to("cpu")
# 输入文本
input_text = "你好,Qwen!"
# 分词并生成输出
inputs = tokenizer(input_text, return_tensors="pt").to("cpu")
outputs = model.generate(**inputs, max_length=50)
# 解码生成的文本
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)

(2)运行脚本
将上述代码保存为 run_qwen.py 文件,并在命令提示符中运行:

python run_qwen.py

5. 总结

通过上述步骤,您可以成功手动下载 Qwen-1.8B 模型文件并将其放置到本地路径。以下是关键点总结:

  • 下载方式:可以通过 Hugging Face 网站、Git LFS 或 Hugging Face CLI 下载模型文件。
  • 本地路径:确保模型文件完整且路径正确。
  • 加载模型:使用 transformers 库加载本地模型并进行推理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值