跨越合作壁垒——多智能体高效动态协同之路

在存在许多队友的环境中,一项协作任务往往只涉及少数智能体,以往多智能体强化学习关注所有队友,学习完成任务的效率就受到了限制。这时,如何聚焦协作任务,学会仅与相关的队友协作,是提高学习效率的一个途径。南栖仙策与南京大学和清华大学团队合作提出了分布式表征学习方法(Multi-agent Concentrative Coordination / MACC)实现了这一技术,论文发表在IJCAI 2022上。

组织中效率的碰撞

在现代社会的快速发展中,组织效率的提高成为了一个迫切需求。在各种工作环境中,我们往往需要与不同的队友协同合作,以完成各种复杂的任务。然而,随着参与者数量的增加,保持高效率的协作变得愈发具有挑战性。另一方面,如果仅仅将任务完全分解为多个独立的模块,然后分配给不同的人去完成,这种情况下,团队成员们很容易只陷入于专注自己的任务,而忽略了对全局的影响,这也会导致整体目标协调不足和资源浪费。那么,如何在众多队友中精准定位关键合作伙伴,节省精力,实现高效协作呢?

多智能体们也遇到相似的问题,当面对越来越复杂的任务,当大规模的建模训练和信息处理耗费大量时间,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值