【Python】蒙特卡洛模拟 | PRNG 伪随机数发生器 | 马特赛特旋转算法 | LCG 线性同余算法 | Python Random 模块

本文深入探讨了Python中的伪随机数生成,包括线性同余发生器(LCG)、马特赛特旋转算法(Mersenne Twister)和Python的Random模块。介绍了各种算法的原理、优缺点,并通过蒙特卡洛模拟展示了随机数生成在实践中的应用。此外,文章提供了几个练习,帮助读者加深对随机数生成器的理解和使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

     猛戳订阅! 👉 《一起玩蛇》🐍

💭 写在前面:本篇博客将介绍经典的伪随机数生成算法,我们将  重点讲解 LCG(线性同余发生器) 算法与马特赛特旋转算法,在此基础上顺带介绍 Python 的 random 模块。 本篇博客还带有练习,无聊到喷水的练习,咳咳…… 学完前面的内容你就会了解到 Python 的 Random 模块的随机数生成的实现,是基于马特赛特旋转算法的,比如 random_u

蒙特卡洛模拟是一种基于概率的模拟方法,可以用来解决在非确定性模型中难以进行分析的问题。在Python中,可以使用随机数生成算法来实现蒙特卡洛模拟。 一个经典的蒙特卡洛模拟的实例是计算圆周率π的近似值。通过在一个正方形内随机生成大量的点,并统计落在圆内的点的比例,可以利用这个比例来估计圆的面积,从而得到π的近似值。 以下是一个简单的Python实例代码,用于进行蒙特卡洛模拟计算π的近似值: ```python import random def monte_carlo_pi(num_points): points_inside_circle = 0 points_total = 0 for _ in range(num_points): x = random.uniform(-1, 1) y = random.uniform(-1, 1) distance = x**2 + y**2 if distance <= 1: points_inside_circle += 1 points_total += 1 pi_approximation = 4 * points_inside_circle / points_total return pi_approximation # 调用函数进行蒙特卡洛模拟计算π的近似值 approx_pi = monte_carlo_pi(1000000) print(approx_pi) ``` 在这个例子中,我们使用了Pythonrandom模块来生成随机数。通过生成大量的随机点,并计算落在圆内的点的比例,最后乘以4,我们可以得到π的近似值。 请注意,这个例子只是蒙特卡洛模拟的一个简单示例,实际应用中可能涉及更复杂的问题和算法。 #### 引用[.reference_title] - *1* *2* *3* [【Python蒙特卡洛模拟 | PRNG 伪随机数发生器 | 马特赛特旋转算法 | LCG 线性算法 | Python Random ...](https://blog.csdn.net/weixin_50502862/article/details/126732514)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 56
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王平渊

喜欢的话可以支持下我的付费专栏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值