class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
in_channels
:输入通道的数量,对应于输入的图像或特征图的深度。out_channels
:输出通道的数量,表示卷积核(滤波器)的数量,也即卷积操作后生成的特征图的深度。kernel_size
:卷积核的大小,可以是一个整数表示正方形卷积核,也可以是一个元组(h, w)
表示高度和宽度不同的卷积核。stride
:卷积的步长,默认为 1,表示卷积核在输入上滑动的步长。padding
:零填充的大小,用于控制输入特征图边界的处理。dilation
:卷积核的扩张率,默认为 1。groups
:分组卷积的数量。默认为 1,表示标准卷积。当groups
不等于 1 时,输入通道被分为groups
份,每份进行卷积操作后再进行拼接。bias
:是否包含偏置项,默认为 True。padding_mode
:填充模式,默认为 'zeros',表示零填充。
- 通过卷积操作可以提取输入数据的空间特征,是卷积神经网络的基本组件。
- 通过调整参数,可以灵活适应不同任务和数据集。
- 支持分组卷积、扩张卷积等操作,提高网络的表达能力。
- 可以方便地用于图像处理等领域,具有广泛的应用。