介绍nn.Conv2d 类的基本参数和用法

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')
 

 

  • in_channels:输入通道的数量,对应于输入的图像或特征图的深度。
  • out_channels:输出通道的数量,表示卷积核(滤波器)的数量,也即卷积操作后生成的特征图的深度。
  • kernel_size:卷积核的大小,可以是一个整数表示正方形卷积核,也可以是一个元组 (h, w) 表示高度和宽度不同的卷积核。
  • stride:卷积的步长,默认为 1,表示卷积核在输入上滑动的步长。
  • padding:零填充的大小,用于控制输入特征图边界的处理。
  • dilation:卷积核的扩张率,默认为 1。
  • groups:分组卷积的数量。默认为 1,表示标准卷积。当 groups 不等于 1 时,输入通道被分为 groups 份,每份进行卷积操作后再进行拼接。
  • bias:是否包含偏置项,默认为 True。
  • padding_mode:填充模式,默认为 'zeros',表示零填充。

  • 通过卷积操作可以提取输入数据的空间特征,是卷积神经网络的基本组件。
  • 通过调整参数,可以灵活适应不同任务和数据集。
  • 支持分组卷积、扩张卷积等操作,提高网络的表达能力。
  • 可以方便地用于图像处理等领域,具有广泛的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值