checkpoint = torch.load(pt_filename) print(checkpoint['state_dict'].keys())
torch.load(pt_filename)是将pt权值文件加载进pytorch,方便利用pytorch库进行查看和操作。
pt文件是一个字典文件,内部只有一个键,键名是'state_dict','state_dict'对应的键值是一个字典。
print(checkpoint['state_dict'].keys())是打印输出'state_dict'对应的这个字典中的全部键名。
.keys()是字典中所有键名的意思。
'state_dict'对应的这个字典中有很多键。
torch.load
用于加载 PyTorch 模型的权重文件(通常是以.pt
或.pth
为扩展名的文件),加载后得到一个字典。这个字典的键
'state_dict'
对应着模型的状态字典,里面包含了模型的所有参数。打印
checkpoint['state_dict'].keys()
会显示这个状态字典中的所有键,每个键对应模型的一个参数。通常,这些键的命名与模型中定义的层和参数名称相对应。
这样的设计使得在加载模型权重后,可以方便地将这些权重应用到相应的模型结构上,或者查看加载的模型中都包含哪些参数。
通过
checkpoint['state_dict'].keys()
获取的结果是包含在模型状态字典中的所有键的集合。这些键的具体名称取决于您的模型的结构和参数命名。如果您想具体查看这些键的内容,可以通过打印出每个键对应的值来实现。
逐个打印每个键和其对应的值,以便更详细地了解模型的状态字典中包含的内容。
for key, value in checkpoint['state_dict'].items():
print(f"{key}: {value}")
net.state_dict()
是 PyTorch 中用于获取神经网络模型的状态字典(state dictionary)的方法。这个方法返回一个字典,其中包含了模型的所有参数(权重和偏置项)及其对应的键。通常,当你训练或保存模型时,会使用
state_dict
来保存或加载模型的参数。这个字典可以方便地被 PyTorch 的torch.save()
和torch.load()
函数使用。
import torch
import torch.nn as nn# 定义一个简单的神经网络
class SimpleNet(nn.Module):
def __init__(self):
super(SimpleNet, self).__init__()
self.fc = nn.Linear(10, 5)def forward(self, x):
return self.fc(x)# 创建模型实例
net = SimpleNet()# 获取模型的状态字典
model_state_dict = net.state_dict()# 保存模型的状态字典到文件
torch.save(model_state_dict, "model_weights.pth")# 保存整个模型到文件
torch.save(net, "full_m