怎么查看深度学习pytorch中的pt权值文件

checkpoint = torch.load(pt_filename)
print(checkpoint['state_dict'].keys())

torch.load(pt_filename)是将pt权值文件加载进pytorch,方便利用pytorch库进行查看和操作。

pt文件是一个字典文件,内部只有一个键,键名是'state_dict','state_dict'对应的键值是一个字典。

print(checkpoint['state_dict'].keys())是打印输出'state_dict'对应的这个字典中的全部键名。

.keys()是字典中所有键名的意思。
'state_dict'对应的这个字典中有很多键。

torch.load 用于加载 PyTorch 模型的权重文件(通常是以 .pt.pth 为扩展名的文件),加载后得到一个字典。

这个字典的键 'state_dict' 对应着模型的状态字典,里面包含了模型的所有参数。

打印 checkpoint['state_dict'].keys() 会显示这个状态字典中的所有键,每个键对应模型的一个参数。

通常,这些键的命名与模型中定义的层和参数名称相对应。

这样的设计使得在加载模型权重后,可以方便地将这些权重应用到相应的模型结构上,或者查看加载的模型中都包含哪些参数。

通过 checkpoint['state_dict'].keys() 获取的结果是包含在模型状态字典中的所有键的集合。这些键的具体名称取决于您的模型的结构和参数命名。

如果您想具体查看这些键的内容,可以通过打印出每个键对应的值来实现。

逐个打印每个键和其对应的值,以便更详细地了解模型的状态字典中包含的内容。

for key, value in checkpoint['state_dict'].items():
    print(f"{key}: {value}")
 

net.state_dict() 是 PyTorch 中用于获取神经网络模型的状态字典(state dictionary)的方法。这个方法返回一个字典,其中包含了模型的所有参数(权重和偏置项)及其对应的键。

通常,当你训练或保存模型时,会使用 state_dict 来保存或加载模型的参数。这个字典可以方便地被 PyTorch 的 torch.save()torch.load() 函数使用。

import torch
import torch.nn as nn

# 定义一个简单的神经网络
class SimpleNet(nn.Module):
    def __init__(self):
        super(SimpleNet, self).__init__()
        self.fc = nn.Linear(10, 5)

    def forward(self, x):
        return self.fc(x)

# 创建模型实例
net = SimpleNet()

# 获取模型的状态字典
model_state_dict = net.state_dict()

# 保存模型的状态字典到文件
torch.save(model_state_dict, "model_weights.pth")

# 保存整个模型到文件
torch.save(net, "full_m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值