(一)线性回归(优化Plus)

数据的标准化(归一化):使收敛更快!

 

学习率调小:使收敛更精准!但需要更多迭代

批量梯度下降:一次计算所有样本,肯定精确,但耗时!

随机梯度下降:一个epoch中,样本随机选取一个

小批量梯度下降(MiniBatch):每个batch设置的小一些,一般为2的次幂,最常用!

正则化:对权重参数进行惩罚,让权重参数尽可能平滑(常见方法是权重加平方项等)

正则化的方法也有岭回归和lasso回归,在损失函数引入正则化项,防止过拟合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Vic.GoodLuck

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值