数据的标准化(归一化):使收敛更快!
学习率调小:使收敛更精准!但需要更多迭代
批量梯度下降:一次计算所有样本,肯定精确,但耗时!
随机梯度下降:一个epoch中,样本随机选取一个
小批量梯度下降(MiniBatch):每个batch设置的小一些,一般为2的次幂,最常用!
正则化:对权重参数进行惩罚,让权重参数尽可能平滑(常见方法是权重加平方项等)
正则化的方法也有岭回归和lasso回归,在损失函数引入正则化项,防止过拟合
数据的标准化(归一化):使收敛更快!
学习率调小:使收敛更精准!但需要更多迭代
批量梯度下降:一次计算所有样本,肯定精确,但耗时!
随机梯度下降:一个epoch中,样本随机选取一个
小批量梯度下降(MiniBatch):每个batch设置的小一些,一般为2的次幂,最常用!
正则化:对权重参数进行惩罚,让权重参数尽可能平滑(常见方法是权重加平方项等)
正则化的方法也有岭回归和lasso回归,在损失函数引入正则化项,防止过拟合