癫痫是一种常见的神经系统疾病,其脑电信号(Electroencephalogram,简称EEG)包含了有关患者脑电活动的重要信息,识别和分类癫痫脑电信号对于疾病的早期检测和治疗具有重要意义,本篇文章将介绍如何使用K最近邻(K-Nearest Neighbors,简称KNN)算法实现癫痫脑电信号的识别,并提供相应的Matlab源码。
KNN算法是一种基于实例的监督学习算法,用于分类和回归问题,其基本思想是通过测量不同样本之间的距离来进行分类,在癫痫脑电信号识别中可以将每个脑电信号样本表示为一个特征向量,并根据不同特征向量之间的距离来判断其所属类别。
以下是使用Matlab实现KNN算法进行癫痫脑电信号识别的示例代码:
% 加载数据集
load('eeg_data.mat'); % 假设数据集保存在eeg_data.mat文件中,包含特征矩阵X和标签向量y
% 数据预处理
X = zscore(X); % 标准化特征矩阵
%