基于莱维飞行和随机游动策略的灰狼算法CMGWO求解单目标问题

353 篇文章 3 订阅 ¥99.90 ¥299.90

灰狼算法(Grey Wolf Optimization,GWO)是一种基于模拟灰狼群行为的优化算法,它模拟了灰狼在自然界中的狩猎行为,本文将介绍一种改进的灰狼算法,称为CMGWO(Cuckoo Search with Grey Wolf Optimization),它结合了莱维飞行和随机游动策略,用于解决单目标问题,下面将详细介绍CMGWO算法的原理,并给出相应的MATLAB源代码实现。

CMGWO算法的原理:

  1. 初始化灰狼群体:随机生成一定数量的灰狼个体作为初始种群。

  2. 计算适应度值:对每个灰狼个体,根据目标函数计算其适应度值。

  3. 更新Alpha灰狼:选择适应度最好的灰狼个体作为Alpha灰狼。

  4. 更新Beta和Delta灰狼:选择适应度次好的两个灰狼个体作为Beta和Delta灰狼。

  5. 更新其余灰狼:对于每个灰狼个体,根据当前位置和Alpha、Beta、Delta灰狼的位置更新其位置。

  6. 莱维飞行策略:引入莱维飞行策略,根据莱维分布生成一个随机步长,用于更新灰狼个体的位置。

  7. 随机游动策略:引入随机游动策略,对于某些灰狼个体,以一定的概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员杨弋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值