opencv读取.exr图片文件报错???

最近一直在和.exr格式的图片文件打交道,相信应该也有很多人和我一样读取报错。

import cv2	
sim_depth_path = '.dataset/0000.exr'
img = cv2.imread(sim_depth_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
cv2.imshow('show_exr', np.transpose(img2, (1, 2, 0)))
cv2.waitKey(0)
cv2.destroyAllWindows()

报错:
在这里插入图片描述这里讲一下两种读取.exr格式的图片:
(1)使用opencv
加一行环境设置 os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"

import cv2	
import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
sim_depth_path = '.dataset/0000.exr'
img = cv2.imread(sim_depth_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
cv2.imshow('show_exr', np.transpose(img2, (1, 2, 0)))
cv2.waitKey(0)
cv2.destroyAllWindows()

(2)使用OpenEXR库

def exr_loader(EXR_PATH, ndim=3):
    exr_file = OpenEXR.InputFile(EXR_PATH)
    cm_dw = exr_file.header()['dataWindow']
    size = (cm_dw.max.x - cm_dw.min.x + 1, cm_dw.max.y - cm_dw.min.y + 1)

    pt = Imath.PixelType(Imath.PixelType.FLOAT)

    if ndim == 3:
        # read channels indivudally
        allchannels = []
        for c in ['R', 'G', 'B']:
            # transform data to numpy
            channel = np.frombuffer(exr_file.channel(c, pt), dtype=np.float32)
            channel.shape = (size[1], size[0])
            allchannels.append(channel)

        # create array and transpose dimensions to match tensor style
        exr_arr = np.array(allchannels).transpose((0, 1, 2))
        return exr_arr

    if ndim == 1:
        # transform data to numpy
        channel = np.frombuffer(exr_file.channel('R', pt), dtype=np.float32)
        channel.shape = (size[1], size[0])  # Numpy arrays are (row, col)
        exr_arr = np.array(channel)
        return exr_arr

(3)使用imageio库

import imageio
import os
from PIL import Image
os.environ["OPENCV_IO_ENABLE_OPENEXR"] = "1"
img_path = r'./000000000-cameraNormals.exr'
image = imageio.imread(img_path, 'exr')
output = Image.fromarray(image)
output.show()

  • 11
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Andrew_Xzw

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值