【数论与组合数学 2】同余、中国剩余定理

本文深入介绍了同余的概念,包括基本性质、完全剩余系和简化剩余系,并探讨了欧拉函数、欧拉定理、费马小定理和模逆元。此外,还讲解了线性同余方程组的求解,特别是欧几里得扩展算法和中国剩余定理的应用。
摘要由CSDN通过智能技术生成

同余、中国剩余定理

一、同余 (Congruence)

1. 令 a ,   b ,   m \mathsf{a,\ b,\ m} a, b, m 为整数,且 m ≠ 0 \mathsf{m \neq 0} m=0 。当满足 m ∣ ( a − b ) \mathsf{m \mid (a-b)} m(ab) 时,称 a 与 b 模 m 同余,写作 a ≡ b   m o d   m \mathsf{a \equiv b \ mod \ m} ab mod m

  • 例子:

    3 ≡ 27   m o d   12 \mathsf{3 \equiv 27\ mod\ 12} 327 mod 12 − 3 ≡ 11   m o d   7 \mathsf{-3 \equiv 11\ mod\ 7} 311 mod 7

2. 基本性质:同余兼容常用加法与乘法运算。如果 a ≡ b   ( m o d   m ) \mathsf{a \equiv b\ (mod\ m)} ab (mod m) 并且 c ≡ d   ( m o d   m ) \mathsf{c \equiv d\ (mod\ m)} cd (mod m),那么 a + c ≡ b + d   ( m o d   m ) \mathsf{a+c \equiv b+d\ (mod\ m)} a+cb+d (mod m) a c ≡ b d   ( m o d   m ) \mathsf{ac\equiv bd\ (mod\ m)} acbd (mod m)

  • 例子:

    4 + 12 ≡ 26 + 1   ( m o d   11 ) \mathsf{4 + 12 \equiv 26 + 1\ (mod\ 11)} 4+1226+1 (mod 11) 4 × 12 ≡ 26 × 1   ( m o d   11 ) \mathsf{4 \times 12 \equiv 26 \times 1\ (mod\ 11)} 4×1226×1 (mod 11)

  • 证明:

    a = b + m k , c = d + m l , a + c = b + d + m ( k + l ) \mathsf{a = b + mk,c = d + ml,a + c = b + d + m(k + l)} a=b+mkc=d+mla+c=b+d+m(k+l)

    a c = b d + b m l + d m k + m 2 k l = b d + m ( b l + d k + m k l ) \mathsf{ac = bd + bml + dmk + m^{2}kl} = bd + m(bl + dk + mkl) ac=bd+bml+dmk+m2kl=bd+m(bl+dk+mkl)

3. 同样地:如果 a ≡ b   ( m o d   m ) \mathsf{a \equiv b\ (mod\ m)} ab (mod m),那么 a k ≡ b k   ( m o d   m ) \mathsf{a^{k} \equiv b^{k}\ (mod\ m)} akbk (mod m)

4. 然而,下面的推论是错误的:

如果 a ≡ b   ( m o d   m ) \mathsf{a \equiv b\ (mod\ m)} ab (mod m) 并且 c ≡ d   ( m o d   m ) \mathsf{c \equiv d\ (mod\ m)} cd (mod m),那么 a c ≡ b d   ( m o d   m ) \mathsf{a^{c} \equiv b^{d}\ (mod\ m)} acbd (mod m)

如果 a x ≡ b x   ( m o d m ) \mathsf{ax \equiv bx\ (mod m)} axbx (modm),那么 a ≡ b   ( m o d   m ) \mathsf{a \equiv b\ (mod\ m)} ab (mod m)

  • 例子:

    4 12 ≠ 4 1   ( m o d 11 ) \mathsf{4^{12} \neq 4^{1}\ (mod 11)} 412=41 (mod11) 8 2 ≠ 3 7   ( m o d   5 ) \mathsf{8^{2} \neq 3^{7}\ (mod\ 5)} 82=37 (mod 5) 5 × 2 ≡ 2 × 2   ( m o d   6 ) \mathsf{5 \times 2 \equiv 2 \times 2\ (mod\ 6)} 5×22×2 (mod 6)

二、剩余系统

  1. 模 m 的完全剩余系:一组整数 a 1 ,   a 2 ,   ⋯   a m \mathsf{a_{1},\ a_{2},\ \cdots\ a_{m}} a1, a2,  am,满足当 i ≠ j \mathsf{i \neq j} i=j 时, a i ≠ a j   m o d   m \mathsf{a_{i} \neq a_{j}\ mod\ m} ai=aj mod m,即 m 个数两两互不同余。

  2. 模 m 的简化剩余系:m 的完全剩余系中与 m 互素的数构成的子集。

  • 例子:

    如果 m = 9 \mathsf{m=9} m=9,完全剩余系: { 1 ,   2 ,   3 ,   4 ,   5 ,   6 ,   7 ,   8 ,   9 } \mathsf{\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9 \}} { 1, 2, 3, 4, 5, 6, 7, 8, 9} 简化剩余系: { 1 ,   2 ,   4 ,   5 ,   7 ,   8 } \mathsf{\{ 1,\ 2,\ 4,\ 5,\ 7,\ 8 \}} { 1, 2, 4, 5, 7, 8}

    如果 m = 10 \mathsf{m=10} m=10,完全剩余系: { 1 ,   2 ,   3 ,   4 ,   5 ,   6 ,   7 ,   8 ,   9 ,   10 } \mathsf{\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9,\ 10 \}} { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 简化剩余系: { 1 ,   3 ,   7 ,   9 } \mathsf{\{ 1,\ 3,\ 7,\ 9 \}} { 1, 3, 7, 9}

三、欧拉函数

1. 简化剩余系中元素个数,用 ϕ ( m ) \mathsf{\phi(m)} ϕ(m) 表示。

  • 例子:

    ϕ (

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

干点儿正事儿吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值