分层K折交叉验证


K折交叉验证(K-fold Cross Validation)是一种 评估机器学习模型性能的常用技术和方法,其目的是通过将数据集分成K个子集(或“折”),来 估计模型在独立数据上的预测能力,以此来 减少因模型 过拟合训练数据而导致的评估偏差。下面是K折交叉验证的基本步骤和原理:

基本原理

  1. 数据分割:首先,将原始数据集随机均匀地分割成K个不重叠的子集(或“fold”)。每个子集应尽可能保持数据分布的一致性,特别是当类别标签存在时,要保证各个类别在不同子集中比例相近,这可以通过分层抽样实现。

  2. 循环训练与验证:接下来,进行K轮迭代。在每一轮中:

    • 选择其中一个子集作为验证集(validation set)。
    • 剩余的K-1个子集合并作为训练集(training set)。
    • 使用训练集训练模型。
    • 利用验证集评估模型性能,通常通过计算某种性能度量,比如准确率、精确度、召回率、F1分数、AUC-ROC曲线下的面积等。
  3. 结果汇总:完成K轮迭代后,将每轮验证集上的评估结果(如预测误差)平均起来,得到一个单一的评估指标,作为模型性能的综合估计。这一步骤考虑到了模型在不同数据子集上的表现,提高了评估的稳定性和可靠性。

作用与优势

  • 减少偏差与方差:通过在不同的数据子集上评估模型,K折交叉验证有助于减小由于数据划分随机性导致的评估偏差,同时提供了模型性能的一致性估计。
  • 模型选择与调参:可以用来比较不同模型之间的性能,帮助选择最佳模型;也适用于超参数调优,找到使模型性能最优的参数组合。
  • 避免过拟合:能够更好地评估模型在未见过的数据上的泛化能力,降低过拟合风险。
  • 资源高效:相较于单独保留一个大型测试集,K折交叉验证更加高效地利用了数据资源,尤其是在数据量相对有限时。

注意事项

  • K值选择:K值的选择会影响验证结果的稳定性与准确性。较大的K值(如K=10)可以提供更稳定的模型性能估计,但训练时间也会相应增加。较小的K值(如K=2,称为两重交叉验证或简单交叉验证)可能导致较大的方差。实践中,K=5或K=10是常见的选择。
  • 计算成本:K折交叉验证相比单次训练和测试需要更多的计算资源,特别是在数据集庞大或模型复杂时。
  • 分层处理分类数据:在分类任务中,为了保持训练集和验证集中类别比例一致,可采用分层K折交叉验证。

当然,让我们通过一个具体的例子来理解K折交叉验证的过程。假设我们有一个包含100条记录的数据集,我们要使用K折交叉验证(这里取K=5)来评估一个线性回归模型的性能。

步骤分解

  1. 数据准备:首先,将数据集按行编号为1到100。

  2. 数据分割:将这100条记录均匀分成5个子集(每个子集20条记录)。

  3. 开始验证

    • 第一轮选取子集1作为验证集,子集2到5作为训练集。使用这80条记录训练模型,然后用子集1(20条记录)评估模型性能,记录下该轮的评估指标(比如均方误差MSE)。
    • 第二轮选取子集2作为验证集,子集1、3、4、5作为训练集。同样,训练模型并评估性能。
    • 重复以上步骤,直到每个子集都被用作验证集一次。
      在这里插入图片描述
  4. 结果整合:在五轮结束后,我们将得到五次评估的结果。为了得到一个综合的性能指标,我们通常会计算这些结果的平均值(如果评估的是误差,则取平均误差;如果是准确率,则取平均准确率)。

示例代码(Python + Scikit-learn)

from sklearn.model_selection import KFold
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regression
from sklearn.metrics import mean_squared_error

# 生成示例数据集
X, y = make_regression(n_samples=100, n_features=10, noise=0.1)

# 初始化线性回归模型
model = LinearRegression()

# 初始化5折交叉验证
kf = KFold(n_splits=5, shuffle=True, random_state=42)

mse_scores = []

# 进行K折交叉验证
for train_index, test_index in kf.split(X):
    # 分割数据
    X_train, X_test = X[train_index], X[test_index]
    y_train, y_test = y[train_index], y[test_index]
    
    # 训练模型
    model.fit(X_train, y_train)
    
    # 预测并计算均方误差
    y_pred = model.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    mse_scores.append(mse)

# 输出平均均方误差
print("Average Mean Squared Error:", sum(mse_scores)/len(mse_scores))

这段代码首先生成了一个具有100个样本的回归问题数据集,然后定义了一个线性回归模型,并使用5折交叉验证来评估模型的性能,输出所有轮次的平均均方误差。这样,我们就可以基于这个综合指标来判断模型在未知数据上的预测能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值