基于典型相关性分析的多视图学习方法(基于核技术的 CCA)——核典型相关性分析(KCCA)

核典型相关性分析(Kernel Canonical Correlation Analysis, KCCA)是典型相关性分析(Canonical Correlation Analysis, CCA)的非线性扩展,它允许分析者在高维特征空间中寻找两组变量之间的相关性,而无需显式地构造高维空间的特征向量。

这是通过使用核技巧(kernel trick)实现的,核技巧允许在原始低维空间中计算高维空间的内积避免了维度灾难带来的计算复杂性。

KCCA的基本原理

KCCA的目标是找到两组变量 X \mathbf{X} X Y \mathbf{Y} Y 在高维特征空间中的非线性投影,使得投影后的变量之间有最大相关性。这里的 X \mathbf{X} X Y \mathbf{Y} Y 可以是两组观测数据,比如一组图像和一组描述这些图像的文字。

KCCA的公式

给定数据集 X = { x 1 , x 2 , … , x n } \mathbf{X} = \{x_1, x_2, \ldots, x_n\} X={x1,x2,,xn} Y = { y 1 , y 2 , … , y n } \mathbf{Y} = \{y_1, y_2, \ldots, y_n\} Y={y1,y2,,yn},其中 x i x_i xi y i y_i yi 分别属于 X \mathbf{X} X Y \mathbf{Y} Y
KCCA试图找到投影方向 α \alpha α β \beta β,使得在映射到高维空间后的 ϕ ( x ) \phi(x) ϕ(x) ϕ ( y ) \phi(y) ϕ(y) 上的投影 α T ϕ ( x ) \alpha^T\phi(x) αTϕ(x) β T ϕ ( y ) \beta^T\phi(y) βTϕ(y)最大相关性。

公式细节

为了简化问题,我们通常使用中心化的数据,即 X \mathbf{X} X Y \mathbf{Y} Y 的数据已经被减去了平均值。接下来,KCCA试图最大化下面的比率:

ρ = cov ( α T ϕ ( X ) , β T ϕ ( Y ) ) var ( α T ϕ ( X ) ) var ( β T ϕ ( Y ) ) \rho = \frac{\text{cov}(\alpha^T\phi(\mathbf{X}), \beta^T\phi(\mathbf{Y}))}{\sqrt{\text{var}(\alpha^T\phi(\mathbf{X}))\text{var}(\beta^T\phi(\mathbf{Y}))}} ρ=var(αTϕ(X))var(βTϕ(Y)) cov(αTϕ(X),βTϕ(Y))

这里,

  • α \alpha α β \beta β投影方向向量。
  • ϕ ( X ) \phi(\mathbf{X}) ϕ(X) ϕ ( Y ) \phi(\mathbf{Y}) ϕ(Y) 是数据集 X \mathbf{X} X Y \mathbf{Y} Y 映射到高维空间的结果。
  • cov \text{cov} cov协方差函数。
  • var \text{var} var方差函数。

但是,直接计算上述公式中的高维空间的内积是不可行的,因此我们使用核函数 k ( ⋅ , ⋅ ) k(\cdot, \cdot) k(,) 来代替内积,这样可以避免显式地构造高维空间的向量。核函数是定义在原始数据空间上的,满足默瑟条件,即 k ( x , y ) = ⟨ ϕ ( x ) , ϕ ( y ) ⟩ k(x, y) = \langle\phi(x), \phi(y)\rangle k(x,y)=ϕ(x),ϕ(y)⟩

KCCA的优化问题

最终的优化问题是求解下列广义特征值问题:

K x y β = λ K y y β \mathbf{K}_{xy}\beta = \lambda\mathbf{K}_{yy}\beta Kxyβ=λKyyβ

K y x α = λ K x x α \mathbf{K}_{yx}\alpha = \lambda\mathbf{K}_{xx}\alpha Kyxα=λKxxα

这里,

  • K x y \mathbf{K}_{xy} Kxy X \mathbf{X} X Y \mathbf{Y} Y 之间的核矩阵,其中 K x y ( i , j ) = k ( x i , y j ) \mathbf{K}_{xy}(i,j) = k(x_i, y_j) Kxy(i,j)=k(xi,yj)
  • K x x \mathbf{K}_{xx} Kxx K y y \mathbf{K}_{yy} Kyy 分别是 X \mathbf{X} X Y \mathbf{Y} Y 自身的核矩阵
  • α \alpha α β \beta β 是与最大特征值 λ \lambda λ 对应的特征向量,它们定义了 X \mathbf{X} X Y \mathbf{Y} Y投影方向。

通过求解上述广义特征值问题,我们可以获得投影方向 α \alpha α β \beta β,进而找到两组变量在高维空间中的最大相关性投影。

  • 8
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值