正定矩阵是一种特殊的对称矩阵
,它具有以下性质:
- 对于所有非零向量 x x x,都有 x T A x > 0 x^TAx > 0 xTAx>0。
- 所有的顺序主子式都是正的。
- 所有的特征值都是正的。
这三个条件是等价的,只要满足其中一个,就足以证明一个矩阵是正定的。
一个简单的 2 × 2 2 \times 2 2×2 正定矩阵的例子是:
A = [ 4 2 2 5 ] A = \begin{bmatrix} 4 & 2 \\ 2 & 5 \end{bmatrix} A=[4225]
这个矩阵满足所有顺序主子式的要求:
- 主对角线元素的乘积: D 1 = a 11 a 22 = 4 ⋅ 5 > 0 D_1 = a_{11}a_{22} = 4 \cdot 5 > 0 D1=a11a22=4⋅5>0
- 较大阶次的顺序主子式: D 2 = a 11 a 22 − a 12 a 21 = 4 ⋅ 5 − 2 ⋅ 2 = 12 > 0 D_2 = a_{11}a_{22}-a_{12}a_{21} = 4 \cdot 5 - 2 \cdot 2 = 12 > 0 D2=a11a22−a12a21=4⋅5−2⋅2=12>0
此外,这个矩阵的特征值也都是正的:
λ 1 , 2 = 9 ± ( − 9 ) 2 − 4 ⋅ 16 2 = 9 ± 81 2 = 5 , 4 \lambda_{1,2} = \frac{9 \pm \sqrt{(-9)^2 - 4 \cdot 16}}{2} = \frac{9 \pm \sqrt{81}}{2} = 5, 4 λ1,2=29±(−9)2−4⋅16=29±81=5,4
因此,这是一个正定矩阵。