什么是正定矩阵?

正定矩阵是一种特殊的对称矩阵,它具有以下性质:

  1. 对于所有非零向量 x x x,都有 x T A x > 0 x^TAx > 0 xTAx>0
  2. 所有的顺序主子式都是正的。
  3. 所有的特征值都是正的。

这三个条件是等价的,只要满足其中一个,就足以证明一个矩阵是正定的。

一个简单的 2 × 2 2 \times 2 2×2 正定矩阵的例子是:

A = [ 4 2 2 5 ] A = \begin{bmatrix} 4 & 2 \\ 2 & 5 \end{bmatrix} A=[4225]

这个矩阵满足所有顺序主子式的要求:

  1. 主对角线元素的乘积: D 1 = a 11 a 22 = 4 ⋅ 5 > 0 D_1 = a_{11}a_{22} = 4 \cdot 5 > 0 D1=a11a22=45>0
  2. 较大阶次的顺序主子式: D 2 = a 11 a 22 − a 12 a 21 = 4 ⋅ 5 − 2 ⋅ 2 = 12 > 0 D_2 = a_{11}a_{22}-a_{12}a_{21} = 4 \cdot 5 - 2 \cdot 2 = 12 > 0 D2=a11a22a12a21=4522=12>0

此外,这个矩阵的特征值也都是正的:

λ 1 , 2 = 9 ± ( − 9 ) 2 − 4 ⋅ 16 2 = 9 ± 81 2 = 5 , 4 \lambda_{1,2} = \frac{9 \pm \sqrt{(-9)^2 - 4 \cdot 16}}{2} = \frac{9 \pm \sqrt{81}}{2} = 5, 4 λ1,2=29±(9)2416 =29±81 =5,4

因此,这是一个正定矩阵。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值