深度子空间聚类网络(Deep Subspace Clustering Networks, DSC-Nets)

深度子空间聚类网络(Deep Subspace Clustering Networks, DSC-Nets)

引言

深度子空间聚类网络(DSC-Nets)是一种深度学习框架,用于在高维数据中自动发现潜在的低维子空间结构,并在此基础上进行有效的聚类。

DSC-Nets结合了深度学习的强大表示能力和传统子空间聚类的结构优势,特别适用于处理非线性分布和高维复杂数据集。

基本原理

DSC-Nets的核心思想是通过深度神经网络学习数据的低维表示,同时在学习过程中直接优化一个自表达矩阵,该矩阵用于揭示数据点之间的子空间关系。

这种方法克服了传统聚类方法在高维空间中的局限性,同时也避免了预聚类步骤,简化了整个流程。

模型架构

DSC-Nets通常由两个主要组件构成:编码器自表达层

  • 编码器负责将输入数据映射到低维特征空间
  • 自表达层则用于学习数据点之间的自表达关系。
编码器

编码器通常由一系列卷积层和全连接层组成,用于提取数据的层次特征表示

假设输入数据为 X X X,编码器可以表示为 f θ ( X ) f_\theta(X) fθ(X),其中 θ \theta θ是编码器的参数。

自表达层

自表达层的任务是学习一个自表达矩阵 Z Z Z,其中 Z i j Z_{ij} Zij表示数据点 i i i可以如何通过数据点 j j j线性组合来表示

自表达矩阵的优化目标是使数据点 X X X能够通过其在低维空间的表示 H H H自表达矩阵 Z Z Z乘积来重构:

X ≈ H Z X \approx H Z XHZ

其中 H H H数据点在低维空间的表示通常为编码器输出的特征向量矩阵。

目标函数

DSC-Nets的目标函数综合了重构误差和正则化项,以确保学习到的自表达矩阵 Z Z Z既能够有效重构数据,又具有良好的聚类结构。目标函数可以表示为:

min ⁡ Z , θ 1 2 ∥ X − H Z ∥ F 2 + λ Ω ( Z ) s.t.  d i a g ( Z ) = 0 \min_{Z, \theta} \frac{1}{2} \|X - H Z\|_F^2 + \lambda \Omega(Z) \quad \text{s.t. } diag(Z) = 0 Z,θmin21XHZF2+λΩ(Z)s.t. diag(Z)=0

其中:

  • ∥ X − H Z ∥ F 2 \|X - H Z\|_F^2 XHZF2是Frobenius范数,衡量原数据 X X X和通过低维表示 H H H和自表达矩阵 Z Z Z重构 H Z HZ HZ之间的差异。
  • Ω ( Z ) \Omega(Z) Ω(Z)是正则化项,通常采用L1范数 ∥ Z ∥ 1 \|Z\|_1 Z1或L2范数 ∥ Z ∥ F \|Z\|_F ZF来促进 Z Z Z稀疏性或平滑性。
  • λ \lambda λ是正则化参数,用于平衡重构误差和正则化项的影响。
  • d i a g ( Z ) = 0 diag(Z) = 0 diag(Z)=0是约束条件,确保数据点不会使用自身来进行表示,避免自回归问题。
聚类

一旦自表达矩阵 Z Z Z被学习到,就可以使用谱聚类技术来对数据点进行聚类。

谱聚类涉及构建拉普拉斯矩阵 L L L,然后计算 L L L特征向量,并使用 k k k-means或其他聚类算法对特征向量进行聚类。

结论

深度子空间聚类网络(DSC-Nets)是一种创新的深度学习框架,它结合了深度学习的强大学习能力和子空间聚类的结构优势,能够在高维复杂数据中自动发现潜在的子空间结构,并在此基础上进行有效的聚类。

DSC-Nets通过在神经网络的学习过程中直接优化自表达矩阵,实现了端到端的聚类学习,无需预聚类或额外的特征工程,这使得它在图像识别、生物信息学、信号处理等众多领域中具有广泛的应用前景。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值