L1范数深度子空间聚类(L1-Norm Deep Subspace Clustering, L1-DSC)

L 1 L_1 L1范数深度子空间聚类(L1-Norm Deep Subspace Clustering, L1-DSC)

引言

L1范数深度子空间聚类(L1-DSC)是一种结合深度学习和子空间聚类技术的先进方法,用于高维数据的自动特征学习和聚类。

这种方法利用L1范数的稀疏性促进属性,以及深度神经网络的表征学习能力,来发现数据的潜在低维子空间结构。

基本原理

L1-DSC的核心是在深度神经网络中直接学习一个自表达矩阵,该矩阵反映了数据点之间的线性关系,特别是在低维子空间上的关系。

L1范数正则化用于促进自表达矩阵的稀疏性,这意味着每个数据点将主要通过少数其他数据点的线性组合来表示,这有助于识别数据点所属的子空间。

模型架构

L1-DSC的架构通常包含一个深度神经网络,用于特征提取,以及一个附加的自表达层,用于学习自表达矩阵。网络的输出经过L1范数正则化,以促进稀疏性。

目标函数

L1-DSC的目标函数通常包含两部分:数据重构损失L1范数正则化项。

X X X输入数据 f θ ( X ) f_\theta(X) fθ(X)深度神经网络的输出 Z Z Z自表达矩阵,则目标函数可以表示为:

min ⁡ θ , Z L ( X , f θ ( X ) , Z ) + λ ∥ Z ∥ 1 \min_{\theta, Z} \mathcal{L}(X, f_\theta(X), Z) + \lambda \|Z\|_1 θ,ZminL(X,fθ(X),Z)+λZ1

其中:

  • L ( X , f θ ( X ) , Z ) \mathcal{L}(X, f_\theta(X), Z) L(X,fθ(X),Z)重构损失,衡量输入数据 X X X和其通过自表达矩阵 Z Z Z网络输出 f θ ( X ) f_\theta(X) fθ(X)重构的版本之间的差异。通常采用Frobenius范数来表示这种差异:
    L ( X , f θ ( X ) , Z ) = 1 2 ∥ X − f θ ( X ) Z ∥ F 2 \mathcal{L}(X, f_\theta(X), Z) = \frac{1}{2} \|X - f_\theta(X)Z\|_F^2 L(X,fθ(X),Z)=21Xfθ(X)ZF2
  • ∥ Z ∥ 1 \|Z\|_1 Z1是L1范数正则化项,用于促进自表达矩阵 Z Z Z稀疏性。L1范数计算矩阵中所有元素的绝对值之和,因此,如果一个元素接近于零,L1范数将倾向于将其推至零,从而实现稀疏性。
  • λ \lambda λ是正则化参数,控制着稀疏性正则化项对目标函数的贡献程度。
优化过程

优化L1-DSC的目标函数通常涉及交替优化神经网络参数 θ \theta θ和自表达矩阵 Z Z Z

在每次迭代中,先固定 Z Z Z,优化 θ \theta θ;然后再固定 θ \theta θ,优化 Z Z Z

这个过程会重复进行,直到满足某种停止标准,比如达到最大迭代次数或目标函数的变化小于某个阈值。

聚类

一旦学习到了自表达矩阵 Z Z Z,就可以使用谱聚类技术对数据点进行聚类。

谱聚类涉及构建一个拉普拉斯矩阵 L L L,然后计算 L L L特征向量,并使用 k k k-means或其它聚类算法对特征向量进行聚类。

结论

L1范数深度子空间聚类(L1-DSC)是一种强大的工具,用于高维数据的自动特征学习和聚类。

通过结合深度神经网络的表征学习能力和L1范数的稀疏性促进属性,L1-DSC能够自动识别数据的潜在子空间结构,而无需人工特征工程。这种方法在图像分析、生物信息学、自然语言处理等领域有着广泛的应用前景,尤其在处理具有复杂结构和高维性的数据时表现出色。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值