题目描述:
给出一个 N 个顶点 M 条边的无向无权图,顶点编号为 1 到 N。
问从顶点 1 开始,到其他每个点的最短路有几条。
输入格式
第一行包含 2 个正整数 N,M,为图的顶点数与边数。
接下来 M 行,每行两个正整数 x,y,表示有一条顶点 x 连向顶点 y 的边,请注意可能有自环与重边。
输出格式
输出 N 行,每行一个非负整数,第 i 行输出从顶点 1 到顶点 i 有多少条不同的最短路,由于答案有可能会很大,你只需要输出对 100003 取模后的结果即可。
如果无法到达顶点 i 则输出 0。
数据范围
1≤N≤105,
1≤M≤2×105
输入样例:
5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5
输出样例:
1
1
1
2
4
思路:
模板题
代码:
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
typedef pair<int,int>PII;
const int N=1e6+10;
int e[N],ne[N],h[N],w[N],idx=0;
int dist[N],cnt[N];
bool st[N];
int n,m;
int mod=100003;
void add(int a,int b,int c)
{
w[idx]=c;
e[idx]=b;
ne[idx]=h[a];
h[a]=idx++;
}
void dijkstra()
{
dist[1]=0;
cnt[1]=1;
priority_queue<PII,vector<PII>,greater<PII>>q;
q.push({dist[1],1});
while(!q.empty())
{
PII t=q.top();
q.pop();
int pos=t.second;
int dis=t.first;
if(st[pos])
{
continue;
}
st[pos]=true;
for(int i=h[pos];i!=-1;i=ne[i])
{
int j=e[i];
if(dist[j]>dis+w[i])
{
dist[j]=dist[pos]+w[i];
cnt[j]=cnt[pos];
q.push({dist[j],j});
}
else if(dist[j]==dis+w[i])
{
cnt[j]=(cnt[pos]+cnt[j])%mod;
}
}
}
for(int i=1;i<=n;i++)
{
cout<<cnt[i]<<endl;
}
}
int main()
{
cin>>n>>m;
memset(dist,0x3f,sizeof dist);
memset(h,-1,sizeof h);
for(int i=0;i<m;i++)
{
int a,b;
cin>>a>>b;
add(a,b,1);
add(b,a,1);
}
dijkstra();
return 0;
}