AcWing 1134. 最短路计数

题目描述:
给出一个 N 个顶点 M 条边的无向无权图,顶点编号为 1 到 N。

问从顶点 1 开始,到其他每个点的最短路有几条。

输入格式
第一行包含 2 个正整数 N,M,为图的顶点数与边数。

接下来 M 行,每行两个正整数 x,y,表示有一条顶点 x 连向顶点 y 的边,请注意可能有自环与重边。

输出格式
输出 N 行,每行一个非负整数,第 i 行输出从顶点 1 到顶点 i 有多少条不同的最短路,由于答案有可能会很大,你只需要输出对 100003 取模后的结果即可。

如果无法到达顶点 i 则输出 0。

数据范围
1≤N≤105,
1≤M≤2×105
输入样例:

5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5

输出样例:

1
1
1
2
4

思路:
模板题
代码:

#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
typedef pair<int,int>PII;
const int N=1e6+10;
int e[N],ne[N],h[N],w[N],idx=0;
int dist[N],cnt[N];
bool st[N];
int n,m;
int mod=100003;
void add(int a,int b,int c)
{
    w[idx]=c;
    e[idx]=b;
    ne[idx]=h[a];
    h[a]=idx++;
}
void dijkstra()
{
    dist[1]=0;
    cnt[1]=1;
    priority_queue<PII,vector<PII>,greater<PII>>q;
    q.push({dist[1],1});
    while(!q.empty())
    {
        PII t=q.top();
        q.pop();
        int pos=t.second;
        int dis=t.first;
        if(st[pos])
        {
            continue;
        }
        st[pos]=true;
        for(int i=h[pos];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(dist[j]>dis+w[i])
            {
                dist[j]=dist[pos]+w[i];
                cnt[j]=cnt[pos];
                q.push({dist[j],j});
            }
            else if(dist[j]==dis+w[i])
            {
                cnt[j]=(cnt[pos]+cnt[j])%mod;
            }
        }
    }
    for(int i=1;i<=n;i++)
    {
        cout<<cnt[i]<<endl;
    }
}
int main()
{
    cin>>n>>m;
    memset(dist,0x3f,sizeof dist);
    memset(h,-1,sizeof h);
    for(int i=0;i<m;i++)
    {
        int a,b;
        cin>>a>>b;
        add(a,b,1);
        add(b,a,1);
    }
    dijkstra();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值