探索无限可能:基于Amazon Bedrock的生成式AI应用开发详解
一·概述
Amazon Bedrock 是一项完全托管的服务,它通过 API 提供了来自领先的人工智能初创公司和 Amazon 自身的一系列基础模型(FM)。这些模型覆盖了各种行业和应用场景,包括自然语言处理、计算机视觉、个性化推荐等,使得开发者能够根据自己的需求选择最合适的模型。
使用 Amazon Bedrock,无需担心底层基础设施的管理和维护,因为该服务提供了无服务器的计算体验。可以将精力集中在应用开发和优化上,而不是花时间配置和管理服务器。Bedrock 的设计理念是简化机器学习的实现过程,让开发者可以快速启动项目,并轻松扩展。
通过 Bedrock,可以使用自己的数据来定制和训练基础模型,使其更好地适应特定业务需求。训练过程可以通过 AWS 提供的各种工具和接口进行监控和管理,确保训练的透明度和可控性。一旦模型训练完成,可以无缝地将其集成到您的应用程序中,无论是在网页、移动设备还是IoT设备上。
二·个人简介
🏘️🏘️个人主页:以山河作礼。
🎖️🎖️:Python领域新星创作者,CSDN实力新星认证,CSDN内容合伙人,阿里云社区专家博主,新星计划导师,在职数据分析师。
💕💕悲索之人烈焰加身,堕落者不可饶恕。永恒燃烧的羽翼,带我脱离凡间的沉沦。

类型 | 专栏 |
---|---|
Python基础 | Python基础入门—详解版 |
Python进阶 | Python基础入门—模块版 |
Python高级 | Python网络爬虫从入门到精通🔥🔥🔥 |
Web全栈开发 | Django基础入门 |
Web全栈开发 | HTML与CSS基础入门 |
Web全栈开发 | JavaScript基础入门 |
Python数据分析 | Python数据分析项目🔥🔥 |
机器学习 | 机器学习算法🔥🔥 |
人工智能 | 人工智能 |
三·益处
利用 Amazon Bedrock ,可以通过 API 轻松地使用和自定义来自 AI21 Labs、Anthropic、Stability AI 以及 Amazon 提供的各种基础模型(FM),从而加速生成式人工智能应用程序的开发过程。这种快速接入的方式不仅缩短了从概念到产品实现的时间,还大大简化了机器学习项目的起点,使开发者能够跳过繁琐的模型训练阶段,直接进入到应用层面。
- 无需管理底层的计算基础设施,可以专注于应用逻辑和用户体验的优化。这一点尤其对于希望快速实验和迭代新想法的初创公司或小团队尤为重要,因为它们通常缺乏建立和维护大型基础设施的资源。
- 在部署阶段,可以依靠所熟悉和信任的 AWS 工具和功能。这包括使用 AWS Lambda、Amazon S3、Amazon EC2等服务来实现无缝集成和一键式部署。这些服务不仅提供了可扩展性,确保您的应用随着用户基数的增长而增长,同时也保证了应用的可靠性和安全性。
- 安全性是 Amazon Bedrock的另一个重要优势,因为它提供了多种安全措施来保护您的数据和应用。这些措施包括访问控制、加密和监控功能,确保只有授权用户可以访问您的数据和应用,并且所有传输的数据都是加密的。
四·快速开始使用关键应用场景
五·实验步骤
5.1 登入Bedrock
通过以下链接进入 Amazon Bedrock
👉 开始实验 https://dev.amazoncloud.cn/experience/cloudlab?id=65fd7f888f852201f9704488
5.2 主界面介绍
5.2.1 探索与学习
Amazon Bedrock 支持来自行业领先提供商的基础模型,以帮助企业构建生成式AI应用程序。
- Jurassic-2 series:由 AI21 Labs 提供的 Jurassic-2 系列模型,可能专注于自然语言处理或图像识别等特定领域,旨在提供高性能的AI解决方案。
- Titan:这是 Amazon 提供的一个基础模型,涉及多个AI服务,如语音识别、机器翻译或自然语言理解。
- Claude:通过 Anthropic 提供,Claude 是一个基于最新研究的自然语言处理模型,设计用于理解和生成自然语言文本。
- Command:Cohere 提供的 Command 模型是一个旗舰级文本生成模型,它可以遵循用户指令并立即在实际业务应用中发挥作用,如摘要提取、文案撰写、对话系统、信息提取和问题回答等。
- Llama 3:由 Meta(原Facebook)提供的 Llama 3 模型,可能用于社交媒体内容的理解和分析,或者更广泛的语言模型任务。
- Mistral:Mistral AI 提供的 Mistra 模型,可能用于创建个性化的AI体验或增强现有的智能系统。
- Stable Diffusion:Stability AI 提供的 Stable Diffusion 是一个生成模型,能够合成高质量的图片和视频内容,适用于艺术创作、游戏开发等领域。
Amazon Bedrock
提供了一个平台,允许企业根据其独特的需求选择最适合的基础模型,无论是在价格、性能还是能力方面。这些模型可以帮助企业在准确性和性能之间找到平衡,从而开发出满足特定应用场景需求的AI应用程序。
5.2.2 构建与测试
在 Amazon Bedrock 平台上,除了可以使用来自多个提供商的基础模型,还可以自定义和优化这些模型以适应特定的业务需求。
-
自定义模型:
- 通过使用自定义数据对大型语言模型进行微调,可以增强模型在特定领域或任务上的性能。这通常涉及较少的训练时间,因为模型是在预训练模型的基础上进行调整的。
-
持续的预训练:
- 持续地在大型通用语料库上更新现有的大型语言模型可以提高模型的泛化能力和最终任务性能。这是一个不断进步的过程,随着新数据的加入,模型会不断学习和改进。
-
编排:
- 编排功能允许开发者将不同的数据源集成到AI模型中,从而生成更准确、更符合上下文的响应。这对于构建高级的语义搜索和分类应用程序尤其重要。
-
座席:
- 座席功能通过使用基本模型的高级推理功能来处理用户提示,加速生成式AI应用程序的交付。座席可以在创建后进行实时测试,以确保它们能够有效地响应用户输入。
-
保障措施:
- 防护机制是为了防止生成不当、令人反感或有害的内容。通过应用筛选条件,可以确保生成的内容符合特定的标准或准则。
-
水印检测:
- 这是一项专门的功能,用于检测图像是否由 Bedrock 上的 Titan Image Generator 模型生成。这对于保护知识产权和内容所有权尤为重要。
-
评测和部署:
- 模型评估工具允许开发者以编程方式深入研究模型性能,或者进行基于人工的评估,特别是对于那些没有算法可评估的领域,如品牌之声、友好度或相关性。
-
预置的吞吐量:
- 通过使用预置的吞吐量,开发者可以管理 RPM、令牌和其他基于部署的要求,同时保持可预测的性能和稳定的环境。默认情况下,用户可以按模型实际用量支付费用。
5.3 构建属于自己的AI造型师
5.3.1 AI造型师
Amazon Bedrock 是使用基础模型构建和扩展生成式 AI 应用程序的最简单方法。了解如何使用 Amazon Bedrock 为您的使用案例创建业务解决方案。
5.3.2 场景
在不到5分钟的时间内,使用AI造型师找到一套衣服的场景中,可以通过结合Amazon Bedrock的基础模型、知识库和代理功能来构建生成式AI应用程序。
- 选择基础模型:首先,从Amazon Bedrock提供的多种行业领先的大语言模型中选择一个适合服装搭配的基础模型。
- 自定义模型:如果有特定的需求,可以将自定义模型导入到Amazon Bedrock中。这样可以确保模型更贴合特定的业务场景,比如对服装风格有特别的偏好或要求。
- 利用知识库:通过集成知识库,AI造型师能够访问到大量的时尚数据库和搭配建议,从而提供更准确的服装推荐。知识库可以包括时尚趋势、季节搭配、品牌信息等。
- 设置代理:代理功能可以帮助处理用户提示,快速生成合适的服装搭配方案。代理会基于用户的输入(如场合、天气、个人风格等)进行智能推理,并提供相应的服装选择。
- 模型评估:使用Amazon Bedrock的模型评估功能,可以测试不同模型在服装搭配任务上的性能,确保选择的模型能够满足应用的需求。
- 安全防护:为了确保内容的合适性,可以应用Guardrails功能,这是一种使用业界领先技术的安全措施,帮助确保生成的内容符合负责任的AI政策,避免不适当的建议。
- 部署和优化:最后,可以利用Amazon Bedrock的完全托管服务,轻松部署和扩展AI造型师应用程序。同时,可以根据实际用量进行付费,享受无缝部署、可扩展性和持续优化的优势。
5.3.3 生成外观
六·实验:创造独特艺术风格的图像
6.1 配置模型
选择左侧菜单栏中,选择操场中的图像功能,勾选所需要的模型
6.2 操作解释
操作 | 内容 |
---|---|
模式 | 模型生成新图像(生成)或编辑(编辑)在参考图像中提供的图像 |
否定提示 | 不希望模型生成的项目或概念,例如卡通或暴力 |
参考图像 | 用于生成响应的图像或希望模型编辑的图像 |
响应图像 | 生成图像的输出设置,例如质量、方向、大小和要生成的图像数量 |
否定提示 | 不希望模型生成的项目或概念,例如卡通或暴力 |
响应图像 | 用于生成图像的方向、大小 |
高级配置 | 要传递给模型的推理参数 |
6.2.1 文生图
操作 | 内容 |
---|---|
提示词 | A photo with a sense of technology |
提示强度 | 20 |
生成步骤 | 30 |
种子 | 20 |
6.2.2 运行结果
6.2.3 图生图
点击图片,选择编辑功能,从Edit模式切换至Generate模式
操作 | 内容 |
---|---|
提示词 | Gray, dark, dilapidated |
提示强度 | 20 |
6.2.4 生成结果
6.2.5 图像编辑
将模式切换至Edit模式 并选择需要替换的区域
输入提示词、选择提示强度,生成图片
操作 | 内容 |
---|---|
提示词 | Plus a bottle of water |
提示强度 | 30 |
6.2.6 生成结果
七·结论
经过对Amazon Bedrock Stability AI SDXL 1.0的一系列实验,感受如下:
这个AI驱动的视觉创作工具集合无疑为我打开了一扇通往无限创意可能性的大门。通过文本生成图像的功能,我能够将抽象的概念和想法转化为具体而生动的视觉形象,这一过程不仅令人惊叹,也极大地激发了我的创造力。当我看到由简单文字描述变幻出的精细图像时,我被AI技术的强大能力所震撼。
图生图功能进一步扩展了我的创作范围,使我能够基于已有的图像素材,快速生成风格相似或主题一致的新图像。这种从一个点子迅速扩展到一系列视觉作品的能力,极大地加快了我的设计流程,也让我在创意的海洋中遨游得更加自如。
图像编辑功能则像是我的创意画布上的魔术手,让我能够以前所未有的速度和简便性进行调整和修改。不论是色彩的微调、元素的增减,还是风格的完全转换,这些操作都变得异常直观和快捷。
平台的易用性和云基础架构确实降低了学习曲线,使我能够不受地点限制地进行远程创作。我发现,不需要专业的技术知识,就能够利用这些工具创造出高质量的视觉作品。
Amazon Bedrock Stability AI SDXL 1.0为我提供了一次简洁高效的视觉创作体验,它让创意变得触手可及,并帮助我将想象力无缝转换为视觉艺术。随着对这个平台更深入的理解和实践,我相信我能够解锁更多创作的奥秘。