量子计算中的矩阵问题

本文旨在总结本人暑期学校:《量子计算》课程中的重点或者有意思的知识点。

参考书籍

史荣昌 魏丰. 矩阵分析.第3版[M]. 北京理工大学出版社, 2010

本人暑期学校课程 BIT International Summer Course "Quantum Cognition and Decision Models for natural Language Understanding" 北京理工大学 5-16 7 2021

一、用到的数学知识:

伪逆的定义

\textbf{A} \in \textbf C^{m \times n},若存在​\textbf{A} ^+\in \textbf C^{n \times m}​​​​​满足:
\\ (1) \textbf{AA}^+\textbf A=\textbf A;\\ (2) \textbf{A}^+\textbf{A}\textbf A^+=\textbf A^+;\\ (3) (\textbf{A}\textbf A^+)^H=\textbf{AA}^+;\\ (4) (\textbf{A}^+\textbf A)^H=\textbf{A}^+\textbf A;\\
则称\textbf A^+\textbf A的伪逆矩阵,上述四个条件称为Penrose——Moore方程。

定理1

\textbf A \in \textbf C^{m \times n},\textbf {A=BC}\textbf A的一个满秩分解,则

\\\textbf {X=C}^H(\textbf {CC}^H)^{-1}(\textbf B^H\textbf B)^{-1} \textbf B^H\\

\textbf A的伪逆矩阵。

证明:读者可自行带入Penrose——Moore方程验证

定理2

\textbf A\in \textbf C^n,且\textbf A是正交投影矩阵(即幂等Hermite矩阵),则\textbf A^+=\textbf A.

证明:应用定理1

定理3

\textbf {A,B} \in \textbf C^n,且\textbf {A,B}是正交投影矩阵(即幂等Hermite矩阵),满足

\\\textbf {ABA=A};\\\textbf {BAB=B};

则有\textbf {A=B}.

证明:

二、量子概率

量子概率论是传统概率论的推广。它有许多不同于传统概率论的特点,解决了许多传统概率论不能解决的问题。量子概率论中最常用的是正交投影矩阵,用投影来模拟量子的状态。对此,在此不再详述。

上述一中定理3在量子概率论的角度下,说明了在投影假设公理下的Hermitian观测量如果满足response replicability effect(RRE),就不可能满足Order Effect(OE)

Slides中原文:“As was pointed out in PLOS One paper, by using the calculus of Hermitian observables and the projection postulate it is impossible to combine (RRE) with (OE). In short, to generate (OE) Hermitian operators A, B should be noncommutative, but the latter destroys A− B − A response replicability of A”

以上所做的工作正是为了解释这句话。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刺蓟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值