机器人学导论
SCARA机器人:4关节(3转动,1移动)
PUMA 560机器人:6关节(6转动)
美国优势在系统集成,日本强调产业链分工,欧洲强调本体加集成的方案
发展历程:开端(美国1959)、低谷(美国机器人1979-1982损失)、转折(制造业产能转移到亚洲,日本80年代反超,机器人王国)、发展(日本龙头)
里程计模型
通过原位置和实时获取的速度确定当前位置的模型
机器人机动性:
活动性+可操纵性
机器人环境地图表示常用技术:
拓扑图 :节点、边、连接器(地铁、计网路由转换图);
把环境建模为一张线图表示, 忽略了具体的几何特征信息, 不 必精确表示不同节点间的地理位置关系, 图形抽象, 表示方便
特征图 :直线段、 角、 边等作为特征;
特征法定位准确, 模型易于由计算机描述和表示, 参 数化特征也适用于路径规划和轨迹控制, 但特征法需要 特征提取等预处理过程, 对传感器噪声比较敏感, 只适 于高度结构化环境。
栅格图 (网格图 ):工作空间划分成网状结构,代表环境的一部分,分配障碍物概率
网格法是一种近似描述, 易于创建和维护, 对某个网格的感知信息可直接与环境中某个区域对应, 机器人对所测得的障碍物具体形状不太敏感, 特别适于处理超声测量数据。 但当在大型环境中或网格单元划分比较细时, 网格法计算量迅速增长, 需要大量内存单元, 使计算机的实时 处理变得很困难。
直接表征法:记录环境外观感知数据,试图创建函数关系,得到信息
直接表征法数据存贮量大, 环境噪声干扰严重, 特征数据的提取与匹 配困难, 其应用受到一定限制。
通用运动控制器的发展:
结构上:
(1)基于计算机标准总线的运动控制器
(2)soft型开放式运动控制器
(3)嵌入式结构的运动控制器
应用上:
(1)点位运动控制(仅对终点位置有要求)
(2)连续轨迹运动控制(轮廓控制)
(3)同步运动控制(多个轴之间的运动协调控制,包括全程中同步或局部的速度同步)
控制方式上:
(1)开环控制
(2)半闭环控制
(3)全闭环控制
连杆D-H参数
– 连杆长度:两个关节的关节轴线轴i-1 与轴i的公垂线距离为连杆长度, 记为 a i-1 。
– 连杆扭转角:绕公垂线旋转使关节轴 平行的角度。 也就是说若想将轴(i-1) 指向与轴i相同的方向, 需要将轴沿Xi-1轴旋转一定的角度,记为 α i-1 .
– 连杆偏距:相邻两个连杆之间有 一个公共的关节轴, 沿两个相邻 连杆公共轴线方向的距离称为连 杆偏距, 在关节轴i上的连杆偏距记为d i 。
– 关节角:两相邻连杆绕公共轴线旋转的交角称为关节角, 记为θ i 。
重复精度和定位精度
•重复精度:
现今许多工业机器人能够运动到示教的目标点。 示教点是 操作臂运动实际达到的点, 然后关节位置传感器读取关节 角并存储。 当命令机器人返回这个空间点时, 每个关节都 移动到已存储的关节角的位置。 在这样简单的“示教和再 现”的操作臂中, 不存在逆运动学问题, 因为没有在笛卡 儿坐标系里指定目标点。 当制造商在确定操作臂返回示教 点的精度时, 就是在确定操作臂的重复精度。
• 定位精度:
目标的位姿一般都是通过笛卡儿坐标确定的, 计算逆运动学问题 是为了求出关节角。 对于可将目标位置描述为笛卡儿坐标的系统, 它可以将操作臂移动到工作空间中一个从未示教过的点, 这些点 或许以前从未达到过, 我们称这些点为计算点。 对许多操作臂作 业来说这种能力是必须的。 比如, 如果用计算机视觉系统确定机 器人必须抓持的某一部分, 那么机器人必须能够移动到视觉传感 器指定的笛卡儿坐标。 到达这个计算点的精度就被称作为操作臂 的定位精度。
完整约束和非完整约束:
完整约束(控制数=自由度):可以用一个由位姿变量x,y,θ组成的方程来描述,包括全向轮模型;
非完整约束(控制数<自由度):只能用位姿变量的微分方程描述,无法积分成一个位形变量的约束方程,包括双轮自行车模型和差速模型;
运动控制
开环控制:
通过将轨迹(路径)分割成形状清晰的被 定义的运动区段(如直线或圆弧段)来完成运动控 制的任务。 控制问题则是根据直线和圆弧段, 预先 计算平滑的轨迹, 驱动机器人从初始位置走到最终 位置。 特点是所测量的机器人位置不被反馈用作速 度或位置控制。
闭环(反馈)控制:
在移动机器人的运动控制中, 使用状 态反馈控制器, 路径规划问题可简化为在所 要求的路径中间点设置子目标。
(一、开环控制
控制器与被控对象间只有顺序作用而无反向联系且控制单方向进行。
优点:简单、稳定、可靠。若组成系统的元件特性和参数值比较稳定,且外界干扰较小,开环控制能 够保持一定的精度。
缺点:精度通常较低、无自动纠偏能力。
二、闭环控制
闭环控制系统特点:输出端和输入端之间存在反馈回路,输出量对控制过程有直接影响。闭环的作用:应用反馈,减少偏差。
优点:精度较高,对外部扰动和系统参数变化不敏感
缺点:存在稳定、振荡、超调等问题,系统性能分析和设计麻烦。)
导航系统
分类:磁导航、惯性导航、视觉导航、卫星导航等
结构:感知、 规划、 决策和行动
定位
相对定位:
里程计法、
惯性导航定位法
绝对定位:
主动灯塔法 、
路标导航定位法 、
地图匹配法 、
GPS 定位 、
基于概率的绝对定位:马尔可夫定位、蒙特卡洛定位、卡尔曼滤波定位
里程计:
在移动机器人的车轮上安装光电编码器, 通过编码器 记录的车轮转动圈数来计算机器人的位移和偏转角度。
里程计法定位过程中会产生两种误差:系统误差和非系统误差
系统误差:
(1)驱动轮直径不等;
(2)驱动轮实际直径的均值和名义直径不等;
(3)驱动轮轴心不重合;
(4)驱动轮间轮距长度不确定;
(5)有限的编码器测量精度;
(6)有限的编码器采样频率。
非系统误差:(包括方向误差和位置误差)
(1)轮子打滑;
(2)地面不平;
(3)地面有无法预料的物体(例如石块);
(4)外力作用和内力作用;
(5)驱动轮和地板是面接触而不是点接触。
误差补偿:
机器人定位过程中, 需要利用外界的传感器信息补偿误 差。 因此利用外界传感器定位机器人时, 主要任务在于 如何提取导航环境的特征并和环境地图进行匹配。
惯性导航定位法
惯性导航定位法是一种使用惯性导航传感器定位的方法 。 它通常用陀螺仪来测量机器人的角速度, 用加速度计 测量机器人的加速度。 对测量结果进行一次和二次积分 即可得到机器人偏移的角度和位移, 进而得出机器人当 前的位置和姿态。
蒙特卡洛定位MCL
也叫粒子滤波,用N个带有权重的离散采样来表示后验概率密度。它包括4个阶段:初始化,采样阶段,权重归一化和输 出阶段。采样阶段是MCL的核心,它包括重采样、状态转移 和权重计算3步;实际上MCL是按照提议密度分布抽取采样 ,然后利用权重来补偿提议密度分布与后验密度分布 之间的差距
卡尔曼滤波定位
一个最优化自回归数据处理算法。 基 本思想是采用信号和噪声空间状态模型, 结合当前时刻 的观测值和前一时刻的估计值来更新对状态变量的估计, 从而得到当前时刻的估计值。 对于非线性估计问题, 可 以通过线性近似去解决。
实现高效信息融合的一般方案
流程图
路径规划
根据对环境的掌握情况分类:
-
基于地图的全局路径规划:先验环境模型找出从起始点 到目标点的符合一定性能的可行或最优的路径
-
基于传感器的局部路径规划:依赖传感器获得障碍物的尺寸、 形状和位置等信息。 环境是未知或部分未知的
-
混合型方法:结合全局和局部的优点, 将全局规划的“粗” 路径作为局部规划的目标, 从而引导机器人最终找到目标点
方法:
可视图 法
Voronoi 图 法 :一组 由连接两邻点直线的垂直平分线组成的连续多边形组成;远离障碍物但是存在较多突变点
单元分解法
人工势场法 :
基本思想:人工势场实际上是对机器人运行环境的一种抽象描述。 在势 场中包含斥力和引力极, 不希望机器人进入的区域的障碍物 属于斥力极, 子目标及建议机器人进入的区域为引力极。 引 力极和斥力极的周围由势函数产生相应的势场。 机器人在势 场中具有一定的抽象势能, 它的负梯度方向表达了机器人系 统所受到抽象力的方向, 正是这种抽象力, 促使机器人绕过 障碍物, 朝目标前进。
缺点:有关障碍物的有价值的信息抛弃,陷入局部最优解。局部最优解:障碍物和目标点过于相近的时候,机器人运动到一个位置的时候再无法接近目标点,导致被推出,逐渐远离目标点
优点:路径平滑并且安全的;结构简单、 易于实现。
改进:在定义斥力场函数时, 把智能机器人与目标之间的相对距离 也考虑进去, 从而建立一个新的斥力场函数;改进的势场函数 引入了智能机器人与目标的相对距离, 保证了整个势场 仅在目标点全局最小。
A*算法:以空间(即内存的占佣)换取时间(搜 索速度)
栅格法 :确定障碍物的位置给定表征值CV->衰减方式给周围栅格赋值得到障碍物地图;每个栅格的初始值等于该栅格与目标栅格的 横向距离加上该栅格与目标栅格纵向距离,得到初始地图;两者合起来进行路径搜索,最小数值的栅格来寻找路径。
简单、 实用、 操作方便的特点, 完全能够满足使用要求。
(1)无需障碍物为规则障碍物, 在动态规划中, 更加不 需要知道障碍物的形状、 大小;
(2) 无需考虑运动对象的运动轨迹、 数目及形状;
(3) 算法实现简单, 在很多场合都实用;
(4) 只要起始点与终点之间存在通路, 那么栅格就一定 能找到一条路径从起始点到终点。
栅格选得小, 环境分辨率高, 但是抗干扰能力弱, 环境信息 存储量大, 决策速度慢;栅格选得大, 抗干扰能力强, 环境 信息存储量小, 决策速度快, 但是分辨率下降, 在密集障碍 物环境中发现路径的能力减弱
同时定位与建图法(SLAM)
环境建模+定位
隐马尔可夫
难点技术突破点:
- 不确定性和计算量大的问题
- 数据关联问题(一致性)
- 动态目标检测与处理问题
感知系统
定义:
·智能机器人的感知系统相当于人的五官和神经系统, 是机器人获取外部环境信息及进行内部反馈控制的工具 。
·感知系统将机器人各种内部状态信息和环境信息从信 号转变为机器人自身或者机器人之间能够理解和应用的 数据、 信息甚至知识, 它与机器人控制系统和决策系统 组成机器人的核心。
感知行为按照复杂度分为以下几个等级:
• 反射式感知
• 信息融合感知
• 可学习感知
• 自主认知
感知系统的分布:
-
内部传感器
内部传感器通常用来确定机器人在其自身坐标系内的 姿态位置, 是完成移动机器人运动所必需的那些传感器
-
外传感器
外传感器用于机器人本身相对其周围环境的定位, 负责检测距离、 接近程度和接触程度之类的变量, 便于 机器人的引导及物体的识别和处理
多传感器的分布形式:
• 水平静态连接:水平(同一类型)零自由度
• 非水平静态连接 :非水平(不同类型)零自由度
• 水平动态连接 :水平(同一类型)至少一自由度
• 非水平动态连接: 非水平(不同类型)至少一个自由度
• 动态与静态混合连接:动静结合
测距系统(接近觉):
(1) 声呐测距:超声波 脉冲回波法 s=c*t/2
(2) 红外测距
红外传感器, 一般采用反射光强法进行测量, 即目标物对 发光二极管散射光的反射光强度进行测量。 红外传感器包括 一个可以发射红外光的固态二极管和一个用作接收器的固态 光敏二极管或三极管。 当光强超过一定程度时光敏三极管就 会导通, 否则截止。 发光二极管和光敏三极管需汇聚在同一 面上, 这样反射光才能被接收器看到。
(3) 相位法测距 (激光扫描)
公式:
反射光束经过的总距离为:d’ = L+2d
d’ = L+θ/2π·λ
d = θ/4π·λ=(θ/4π)·(c/f)
(4) 旋转编码器
1 绝对式编码器 有测量极限,机械式,刻度尺
2 增量式编码器 停电就ji,透明表盘,收集光波脉冲,转动码盘停电后不存在了
相同点:都依赖于光源发射平行光束,通过可以旋转的编码盘到达探测者,中间过程相同
不同点:机械式和电驱动
(5) 电位计:带中心抽头的旋转可变电阻,不能高频高精度
力传感器
分类:
• 关节力传感器
• 腕力传感器
• 指力传感器
示例结构:
1)环式
2)垂直水平梁式
3)圆筒式
4)四根梁式
磁罗盘
机械式、磁通门、霍尔效应、磁阻式
机械式:将环形磁铁或一对磁棒安装于云母刻度盘上,并将其悬浮于装有水与酒精或甘油混合液的密闭容器中;
磁通门:磁通门场强记的原理上研制的,灵敏度好、体积小、启动快
霍尔效应罗盘:霍尔电压与磁场的垂直分量成正比.垂直分量与方向角度有关.
磁阻式:利用磁阻元件(各向异性磁阻元件和巨磁阻元件)制作成的,给薄片通电,磁场垂直于该薄片的分量将改变薄片的磁极化方向,从而改变电阻,这种磁阻效应直接与电流方向和磁化矢量之间的夹角有关。
姿态 / 航向测量单元:
集成了多轴加速度计、多轴陀螺仪以及电子磁罗盘等传感器的智能传感单元。三个角以飞机飞行为例子进行理解,飞机行驶方向为x轴
视觉测量
(1) 被动
1 单眼视觉
2 立体视觉
(2) 主动
1 光切断法
2 空间编码测距法
3 莫尔条纹法
4 激光测距法
(3) 视觉传感器:两自由度摄像云台(一个平面水平360旋转,一个空间180旋转)、全景摄像机(四周360)
被动传感器:用摄像机等对目标物体进行摄影,获得图像信号
主动传感器:借助于发射装置向目标物体投射光图像,再接收返回信号,测量距离
被动包括:单眼视觉和立体视觉
单眼视觉:从焦点获取形状、从X射线获得、移动视觉,运动图像,一台摄像机
立体视觉:双目视觉、三、多目,多基线立体,多台摄像机
主动包括:光切断法、空间编码测距法、莫尔条纹法、激光测距法
光切断法:把双眼立体视觉中的一个摄像机替换成狭缝投光光源的方法,从水平扫描狭缝光可得到的镜面角度和图像提取的狭缝像的位置关系,按照与立体视觉相同的三角测量原理可以计算和测量出视野内各个点的距离;
空间编码测距法:多个狭缝同时投光,通过给各个狭缝编排适当的代码ID,把多狭缝光线随机切断后再投光的方法,以及利用颜色信息来识别多个狭缝的方法;
莫尔条纹法:投射多个狭缝形成的条纹,然后在另一个位置上透过同样形状的条纹进行观察,通过对条纹间隔或图像中条纹的倾斜等进行分析,可以复原物体表面的凹凸形状;
激光测距法:投射激光等高定向性光线,后通过接收返回光线,测量距离。有计算从光线发送到返回的飞行时间的方法和投射调制光线通过测量接受光线的相位偏差来推算距离的方法。
智能机器人多传感器融合
多传感器信息融合是将来自多传感器或多源的信息和数据模仿人类专家的综合信息处理能力进行智能化处理,从而获得更为全面、准确、可信的结论:信息融合过程:环境->传感器->A/D(数字信号转为模拟信号)->预处理->数据特征提取->信息融合中心->输出结果
方法:
现代方法:人工智能方法(逻辑模块、基于知识的专家系统、模糊集合理论)、信息论方法(聚类分析、莫办法、熵理论、相关性度量)
经典方法:统计法(贝叶斯估计、经典推理法、证据决策理论)、估计方法(最小均方估计、加权平均值法、极大似然估计、卡尔曼滤波)
单智能体运动控制问题
-
路径设计:
选定当前运动目标后,再根据机器人的运动学特征,将直线、圆弧、回旋曲线等过渡曲线组合起来,构成局部路径。特别的对于无全向移动功能的一般轮式移动机构,合理地借助直线、圆弧、回旋曲线等来进行的控制较为容易。
-
位置估计:
通过机器人的正运动学得到车体的移动位置估计速度,然后积分求得坐标。这种方法是最基本的估计移动物体位置的方法。除此之外,可以利用惯性传感器,借助外传感器观测周围环境或依靠外部辅助装置来确定机器人的位置。
-
轨迹控制:
轮式移动机构的控制量有两种:一种是对轮子驱动的操作位置估计量;另一种是若采用转向机构,则就是对转向驱动的操作估计量。各个控制量为位置量和速度量,只要在平移和旋转模式中没有停顿,就必须同步实施对各个驱动轴的控制。
线性和非线性系统:是否满足叠加原理,分别满足线性和非线性微分方程
定常系统又称为时不变系统:其特点是:系统的自身性质(所研究物体的本质属性例如:质量、转动惯量等)不随时间而变化。具体而言,系统响应的性态只取决于输入信号的性态和系统的特性,而与输入信号施加的时刻无关,即若输入u(t)产生输出y(t),则当输入延时τ后施加于系统,u(t-τ)产生的输出为y(t-τ)。
时变系统:其中一或一个以上的参数值随时间而变化,从而整个特性也随时间而变化的系统。
李雅普诺夫稳定性:
间接法:利用线性系统微分方程的解来判断系统稳定性,又 称之为李雅普诺夫第一法;
反馈控制移动机器人到目标点用到,线性系统矩阵特征值的解是负实数
直接法:首先利用经验和技巧来构造李雅普诺夫函数,进而 利用李雅普诺夫函数特征,判断系统稳定性。非线性或线形:反馈线性化:
例:非线性系统x,改进u值,最终到达Xd,与当前位置差值Xe,构造李雅普诺夫函数V正定,求导数,改变u使得导数负定。
非线性->->线性系统
奇异矩阵就是对应的行列式等于零。
可逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。
平衡状态:状态方程等于〇的解;平衡状态的各分量相对于时间不再发生变化。
一致:与时间无关
李雅普诺夫意义下的稳定性:
初始状态在以平衡状态为球心的闭球域内,使系统方程的解都在一个一定半径球内则系统状态稳定。
渐进稳定性:多了极限=0,趋向于球点
不稳定性:超出球
多机器人编队队形控制方法
跟随领航者法、基于行为法、虚拟结构法
滑膜控制方法
克服了输入输出反馈线性化方法的一些局限性:
-
leader作匀速直线运动时候,相对运动方向角误差e^θ才能收敛到零
-
缺乏对扰动的鲁棒性
多移动机器人编队的分层控制策略
单元分解法
单元分解法就是要寻找一条由空的Cell所组成的包含有起点和目标点的连通路径。如果这样的路径在初始划分的状态空间中不存在, 则要找出所有混合cell, 将其进一步细分, 并将划分的结果进行标记, 然后在空的cell中进行搜索, 如此反复, 直至成功。
(单元分解法定义为一种“在机器人自由空间内提取出可以简单地确定路径的部分的所有集合的行动规划方法”。这种“可以简单地确定路径的所有部分的集合”被称为单元。单元分解算法由下列三个步骤构成:
①构筑连接图。
②搜索通路。
③确定路径。)
马尔可夫定位
机器人不知道它的确切位置, 而是知道它可能位置的信度(Belief,即机器人在整个位置 空间的概率分布,信度值之和为1)。马尔可夫定位的关键 之处在于信度值的计算。当机器人收到外界传感器信息或者 利用编码器获得机器人移动信息时,基于马尔可夫假设和贝 叶斯规则,每个栅格的信度值被更新。
先验概率密度(预测)+后验概率密度(更新)
优点:
基于概率的绝对定位不仅能够实现全局定位和 局部位置跟踪, 而且能够解决机器人的“绑架”问题
缺点:
当机器人获得编码器信息或者利用外界传感器感知环 境后, 马尔可夫定位算法必须对所有的栅格进行计算, 因此需要大量的计算资源和内存, 导致定位处理的实时 性很差。
位姿描述
4*4齐次变换矩阵
一个刚体在空间中有六个自由度
旋转矩阵的性质:
单位向量、相互垂直、正交、行向量和列向量都是单位向量,正交矩阵
平移变换、旋转变换、逆变换
正运动学和逆运动学
正向运动学:关节空间到末端笛卡尔空间是单射;
逆向运动学:末端笛卡尔空间到关节空间是复射。
每个关节空间只能确定一个末端笛卡尔空间,但是 一个末端笛卡尔空间能代表多个关节空间
自由度:指完整地描述一个力学系统的运动所需要的独立变数的个数
关节空间:
有n个自由度的工业机器人所有连杆的位置和姿态, 可以用一组 关节变量d i或θ i( 或 )以及杆件几何常数来表示。 这组变量通常 称为关节矢量或关节坐标, 由这些矢量描述的空间称为关节空间。
全局参考框架、局部参考框架
移动机器人运动学问题
两轮差速模型
正运动学问题:将两轮的速度转换为坐标系M下的线速度和角速度
逆运动学:将车体坐标系M下的线速度和角速度转换为驱动轮左轮速度和右轮速度。轮子运动学约束
里程计模型
轮式机器人轮子分类:
固定标准论、可操纵标准论、小脚轮、瑞典轮、球形轮
标准轮分为固定标准轮和可操纵标准轮,存在两个约束:滚动约束和滑动约束;
固定的标准轮没有可操纵的垂直旋转轴;可操纵的可以沿垂直旋转轴转动。
标准轮的自由度为2
其他三个自由度为3,且是全向轮(可按任意的速度在可能的机器人运动空间中运动)没有滑动约束