LLVIP:可见的红外配对数据集,用于低光视觉

LLVIP
├─Annotations
├─infrared
│ ├─test
│ └─train
└─visible
├─test
└─train

This XML file does not appear to have any style information associated with it. The document tree is shown below.
<annotation>
<folder>JPEGImages</folder>
<filename>190001.jpg</filename>
<path/>
<source>
<database>Unknown</database>
</source>
<size>
<width>128
### 类似于LLVIP数据集的替代数据集 对于行人检测任务,多个公开可用的数据集可以作为LLVIP数据集的良好替代方案。这些数据集提供了丰富的标注信息和多样的环境条件,有助于训练鲁棒性强的模型。 #### Caltech Pedestrian Detection Benchmark Caltech Pedestrian Detection Benchmark 是一个广泛使用的行人检测基准测试集合[^1]。该数据集中包含了大量来自不同场景下的视频片段,每帧图像都经过精细的人工标注,适合用来评估算法在复杂现实世界条件下表现如何。 #### Cityscapes Dataset Cityscapes 数据集专注于城市街景中的语义分割与实例级识别问题,其中也涵盖了详细的行人标记信息。此数据集不仅限于静态图片,还包括了动态序列以及多种天气状况下拍摄的内容,非常适合研究者们探索时空上下文中的人物行为模式。 #### KITTI Vision Benchmark Suite KITTI 提供了一个全面的道路场景感知评测平台,在其众多子任务之一即为移动目标(含行人)跟踪挑战赛项。除了高质量的真实驾驶环境中获取的照片外,还附带激雷达点云记录,能够支持跨模态融合分析工作。 ```python import os from PIL import Image import matplotlib.pyplot as plt def display_sample_images(dataset_path, num_samples=3): """展示指定路径下的样本图片""" fig, axes = plt.subplots(1, num_samples, figsize=(15, 5)) sample_files = [os.path.join(root, name) for root, dirs, files in os.walk(dataset_path) for name in files[:num_samples]] for ax, img_file in zip(axes.flatten(), sample_files): img = Image.open(img_file) ax.imshow(img) ax.axis('off') plt.show() # 假设已经下载并解压好了某个上述提到的数据集至本地目录 'path_to_dataset' display_sample_images('path_to_dataset/images/train/') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值