迁移学习(Transfer Learning)是什么?
迁移学习是一种机器学习方法,它的核心思想是利用已有模型的知识来帮助新的任务或数据集进行学习,从而减少训练数据的需求、加快训练速度,并提升模型性能。
📌 1. 为什么需要迁移学习?
在深度学习任务(如目标检测、分类)中,通常需要大量数据和计算资源来训练一个高性能模型。然而,在某些场景下,我们面临以下挑战:
- 数据有限:有些领域(如医学影像、多光谱图像)很难收集足够的数据。
- 计算资源有限:从零开始训练一个深度神经网络需要大量计算,成本高昂。
- 相似任务之间的重复学习:如果两个任务相关,完全重新训练一个新模型会浪费已有的知识。
迁移学习正是为了解决这些问题:
- 利用一个已经训练好的模型(通常是大规模数据上训练的预训练模型),