一、定义
并查集(Union-find) 是一种数据结构,用于维护一些不相交的集合,支持合并两个集合以及判断两个元素是否属于同一个集合。
并查集可以使用树来实现,每个集合可以看做是一棵树,代表元素是根节点。使用路径压缩可以减少查找操作的时间复杂度,使用按秩合并可以减少合并操作的时间复杂度,使得并查集的时间复杂度可以达到近乎常数级别,因此在一些算法中广泛应用,比如 Kruskal 算法。
二、操作
-
初始化:将每个元素初始化为单独的集合,每个集合的代表元素就是自己;
把数组初始化为“-1”:
-
查找:给定一个元素,找到它所属的集合的代表元素;
不进行路径压缩,目的是找到结点的根结点:
-
合并:将两个集合合并成一个集合,即将其中一个集合的代表元素作为另一个集合的代表元素的子节点。
找到各自的祖先,将一个合并到另一个上边:
三、优化
-
小树合并到大树:每次合并时都把小树合并到大树身上,就可以尽量让树不长高;
-
路径压缩:查找谁就去压缩哪条路径;
总结:
并查集的常见应用:
①克鲁斯卡尔算法求最小生成树;
②求无向图的连通分量;
③判断无向图的连通性。
注意,并查集不会用于迪杰斯特拉算法。
写在后面
这个专栏主要是我在学习408真题的过程中总结的一些笔记,因为我学的也很一般,如果有错误和不足之处,还望大家在评论区指出。希望能给大家的学习带来一点帮助,共同进步!!!
参考资料
[1]王道408教材(2025版)
[2]王道课程资料